Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (5): 124-137.doi: 10.16381/j.cnki.issn1003-207x.2024.1770
Previous Articles Next Articles
Suoyi Tan1, Mengning Wang1, Ye Tian2, Jianguo Liu3, Xin Lu1()
Received:
2024-09-30
Revised:
2024-12-03
Online:
2025-05-25
Published:
2025-06-04
Contact:
Xin Lu
E-mail:xin.lu.lab@outlook.com
CLC Number:
Suoyi Tan, Mengning Wang, Ye Tian, Jianguo Liu, Xin Lu. Data-Driven Models and Applications on Poverty Identification, Classification, and Prediction[J]. Chinese Journal of Management Science, 2025, 33(5): 124-137.
1 | 汪三贵. 在发展中战胜贫困——对中国30年大规模减贫经验的总结与评价[J]. 管理世界, 2008(11): 78-88. |
Wang S G. Overcoming poverty in development: A summary and evaluation of China’s 30 years of experience in large-scale poverty reduction[J]. Journal of Management World, 2008(11): 78-88. | |
2 | 习近平. 携手消除贫困 促进共同发展[N].人民日报, 2015-10-17(2). |
Xi J P. Work together to eliminate poverty and promote common development[N].People’s Daily 2015-10-17(2). | |
3 | Department of Economic and Social Affairs. The sustainable development goals report 2023: Special edition [R]. Working Paper, United Nations, 2023. |
4 | 李玉恒, 武文豪, 宋传垚, 等. 世界贫困的时空演化格局及关键问题研究[J]. 中国科学院院刊, 2019, 34(1): 42-50. |
Li Y H, Wu W H, Song C Y, et al. Spatial-temporal pattern of world poverty reduction and key problems analysis[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(1): 42-50. | |
5 | 易成栋, 樊正德, 刘小奇, 等. 全球减贫成效的变化趋势与影响因素研究[J]. 中国人口科学, 2021(6): 12-26+126. |
Yi C D, Fan Z D, Liu X Q, et al. Research on changing trends and influencing factors of global poverty reduction effectiveness[J]. Chinese Journal of Population Science, 2021(6): 12-26+126. | |
6 | 中华人民共和国国务院新闻办公室. 《人类减贫的中国实践》白皮书[EB/OL]. (2021-04-06)[2024-09-30]. . |
The State Council Information Office of the People's Republic of China. White Paper: Poverty Alleviation: China's Experience and Contribution[EB/OL]. (2021-04-06)[2024-09-30]. . | |
7 | 叶兴庆, 殷浩栋. 从消除绝对贫困到缓解相对贫困:中国减贫历程与2020年后的减贫战略[J]. 改革, 2019(12): 5-15. |
Ye X Q, Yin H D. From eliminating absolute poverty to alleviating relative poverty:China’s history of poverty reduction and poverty reduction strategies after 2020 [J] Reform, 2019(12): 5-15. | |
8 | 王小林, 张晓颖. 中国消除绝对贫困的经验解释与2020年后相对贫困治理取向[J]. 中国农村经济, 2021(2): 2-18. |
Wang X L, Zhang X Y. An explanation of China’s experience in eliminating absolute poverty and the orientation of relative poverty governance in the post-2020 era[J]. Chinese Rural Economy, 2021(2): 2-18. | |
9 | United Nations Development Programme. 2023 global multidimensional poverty index (MPI)[R]. Working Paper, United Nations Development Programme,2013. |
10 | Ibrahim M, Alola A A, Ferreira D. Assessing sustainable development goals attainment through energy-environmental efficiency: The case of Latin American and Caribbean countries [J]. Sustainable Energy Technologies and Assessments, 2023, 57: 103219. |
11 | Galal S. Number of people living in extreme poverty in Africa 2016-2030[EB/OL](2025-01-27) [2025-05-18].. |
12 | Guerriero C, Haines A, Pagano M. Health and sustainability in post-pandemic economic policies[J]. Nature Sustainability, 2020, 3(7): 494-6. |
13 | Laborde D, Martin W, Swinnen J, et al. COVID-19 risks to global food security[J]. Science, 2020, 369(6503): 500-502. |
14 | Ge Y, Liu M, Hu S, et al. Who and which regions are at high risk of returning to poverty during the COVID-19 pandemic?[J]. Humanities and Social Sciences Communications, 2022, 9(1): 183. |
15 | Brady D. Poverty, not the poor[J]. Science Advances, 2023, 9(34): eadg1469. |
16 | Ravallion M, Chen S H. Welfare-consistent global poverty measures[R].Working Paper, National bureau of economic research, 2017. |
17 | Ferreira F H, Ravallion M. Global poverty and inequality: A review of the evidence [R]. Working Paper, The World Bank,2008. |
18 | Cobham A. Benefits and costs of the IFF targets for the Post-2015 development agenda[M]//Lomborg B. Prioritizing Development: A Cost Benefit Analysis of the United Nations' Sustainable Development Goals. Cambridge: Cambridge University Press,2018: 171-191. |
19 | Serajuddin U, Uematsu H, Wieser C, et al. Data deprivation: Another deprivation to end[R]. Working Paper,The world Bank, 2015. |
20 | Blumenstock J, Cadamuro G, On R. Predicting poverty and wealth from mobile phone metadata[J]. Science, 2015, 350(6264): 1073-1076. |
21 | Liu J H, Wang J, Shao J, et al. Online social activity reflects economic status[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 457: 581-589. |
22 | Marty R, Duhaut A. Global poverty estimation using private and public sector big data sources[J]. Scientific Reports, 2024, 14: 3160. |
23 | Zhao X, Yu B, Liu Y, et al. Estimation of poverty using random forest regression with multi-source data: A case study in Bangladesh[J]. Remote Sensing, 2019, 11(4): 375-392. |
24 | Niu T, Chen Y, Yuan Y. Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou[J]. Sustainable Cities and Society, 2020, 54: 102014. |
25 | Smythe I S, Blumenstock J E. Geographic microtargeting of social assistance with high-resolution poverty maps [J]. Proceedings of the National Academy of Sciences, 2022, 119(32): e2120025119. |
26 | Rotondi V, Kashyap R, Pesando L M, et al. Leveraging mobile phones to attain sustainable development[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13413-13420. |
27 | Rentschler J, Salhab M, Jafino B A. Flood exposure and poverty in 188 countries[J]. Nature Communications, 2022, 13(1): 3527-3537. |
28 | Deville P, Linard C, Martin S, et al. Dynamic population mapping using mobile phone data [J]. Proceedings of the National Academy of Sciences, 2014, 111(45): 15888-15893. |
29 | Blumenstock J. Don’t forget people in the use of big data for development[J]. Nature, 2018, 561(7722): 170-172. |
30 | 高见, 周涛. 大数据揭示经济发展状况[J]. 电子科技大学学报, 2016, 45(4): 625-633. |
Gao J, Zhou T. Big data reveal the status of economic development[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 625-633. | |
31 | 廖建新. 大数据技术的应用现状与展望[J]. 电信科学, 2015, 31(7): 7-18. |
Liao J X. Big data technology: Current applications and prospects[J]. Telecommunications Science, 2015, 31(7): 7-18. | |
32 | Atkinson A B. On the measurement of poverty[J]. Econometrica: Journal of the Econometric Society, 1987,55(4): 749-764. |
33 | Ravallion M. Poverty comparisons: A guide to concepts and methods[R]. Working Paper, The World Bank, 1992. |
34 | Sen A. Commodities and capabilities[M]. Amsterdam:North-Holland, 1985. |
35 | Levitas R, Pantazis C, Fahmy E, et al. The multi-dimensional analysis of social exclusion[R]. Working Paper,DERA (Digital Education Resource Archive), 2007. |
36 | Brock K, Norton A, Bird B,et al. A rough guide to PPAS: Participatory poverty assessment: An introduction to theory and practice[M]. London: Overseas Development,2001. |
37 | Deon F, Haishan F, Carolina S-P. An adjustment to global poverty lines[R]. Working Paper, World Bank Blogs, 2022. |
38 | Eurostat. The measurement of poverty and social inclusion in the EU: Achievements and further improvements[R].Working paper,United Nations Economic Commission For Europe, 2013. |
39 | Foster J, Greer J, Thorbecke E. A class of decomposable poverty measures[J]. Econometrica: Journal of the Econometric Society, 1984,52(3): 761-766. |
40 | Gini C. Measurement of inequality of incomes[J]. The Economic Journal, 1921, 31(121): 124-126. |
41 | Sen A. Poverty: An ordinal approach to measurement[J]. Econometrica: Journal of the Econometric Society, 1976,44(2): 219-231. |
42 | Shorrocks A F. Revisiting the sen poverty index[J]. Econometrica: Journal of the Econometric Society, 1995, 63(5): 1225-1230. |
43 | Townsend P, Phillimore P, Beattie A. Health and deprivation: Inequality and the North[M].London: Routledge, 1988. |
44 | Townsend P. Poverty in the United Kingdom: A survey of household resources and standards of living[M]. Berkeley:University of California Press, 1979. |
45 | Tank Planning.Human poverty index (HPI)[EB/OL].(2015-06-11) [2025-05-18]. . |
46 | Alkire S, Santos M E. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index[J]. World Development, 2014, 59: 251-274. |
47 | Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379. |
48 | Henderson J V, Storeygard A, Weil D N. Measuring economic growth from outer space[J]. American Economic Review, 2012, 102(2): 994-1028. |
49 | Mellander C, Lobo J, Stolarick K, et al. Night-time light data: A good proxy measure for economic activity?[J]. PLoS ONE, 2015, 10(10): e0139779. |
50 | Sutton P C, Costanza R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation[J]. Ecological Economics, 2002, 41(3): 509-527. |
51 | Frias-Martinez V, Virseda J. On the relationship between socio-economic factors and cell phone usage [C]//Proceedings of the 15th International Conference on Information and Communication Technologies and Development, Atlanta, Georgia, USA, March 12-15,Association for Computing Machinery,2012:76-84. |
52 | Pappalardo L, Pedreschi D, Smoreda Z, et al. Using big data to study the link between human mobility and socio-economic development[C]//Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA,USA,October 29-November l,IEEE, 2015: 871-878. |
53 | Xu Y, Belyi A, Bojic I, et al. Human mobility and socioeconomic status: Analysis of singapore and boston [J]. Computers, Environment and Urban Systems, 2018, 72: 51-67. |
54 | Fatehkia M, Del Villar Z, Koebe T, et al. Using facebook advertising data to describe the socio-economic situation of syrian refugees in Lebanon[J]. Frontiers in big Data, 2022, 5: 1033530. |
55 | Fackbook. Facebook ads API[EB/OL].(2025-01-21) [2025-05-18]. . |
56 | McCallum I, Kyba C C M, Bayas J C L, et al. Estimating global economic well-being with unlit settlements[J]. Nature Communications, 2022, 13(1): 2459-2466. |
57 | Watmough G R, Marcinko C L J, Sullivan C, et al. Socioecologically informed use of remote sensing data to predict rural household poverty[J].Proceedings of the National Academy of Sciences,2019,116(4): 1213-1218. |
58 | Aiken E, Bellue S, Karlan D, et al. Machine learning and phone data can improve targeting of humanitarian aid[J]. Nature, 2022, 603(7903): 864-870. |
59 | Aiken E L, Bedoya G, Blumenstock J E, et al. Program targeting with machine learning and mobile phone data: Evidence from an anti-poverty intervention in Afghanistan[J]. Journal of Development Economics, 2023, 161: 103016. |
60 | Steele J E, Sundsøy P R, Pezzulo C, et al. Mapping poverty using mobile phone and satellite data[J]. Journal of The Royal Society Interface, 2017, 14(127): 20160690. |
61 | Pokhriyal N, Jacques D C. Combining disparate data sources for improved poverty prediction and mapping[J]. Proceedings of the National Academy of Sciences, 2017, 114(46): E9783-E9792. |
62 | Kondmann L, Haeberle M, Zhu X X. Combining twitter and earth observation data for local poverty mapping [C]// Proceedings of NeuRIPS Machine Learning for the Developing World Workshop, Vancouver, Canada, December 12 , NeuRIPS Machine Learning for the Developing World Workshop, 2020: 1-5. |
63 | Chi G, Fang H, Chatterjee S, et al. Microestimates of wealth for all low- and middle-income countries[J]. Proceedings of the National Academy of Sciences, 2022, 119(3): e2113658119. |
64 | Blumenstock J E. Fighting poverty with data[J]. Science, 2016, 353(6301): 753-754. |
65 | Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and Data Engineering, 2009, 22(10): 1345-1359. |
66 | Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016, 353(6301): 790-794. |
67 | Head A, Manguin M, Tran N, et al. Can human development be measured with satellite imagery[C]// Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, Lahore Pakistan, November 16 , Association for Computing Machinery, 2017, 8: 1-11. |
68 | Xie M, Jean N, Burke M, et al. Transfer learning from deep features for remote sensing and poverty mapping[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Phoenix, Arizona USA, February 12–17 , AAAI Press,2016:3929-3935. |
69 | Yeh C, Perez A, Driscoll A, et al. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa[J]. Nature Communications, 2020, 11(1): 1-11. |
70 | Espín-Noboa L, Kertész J, Karsai M. Interpreting wealth distribution via poverty map inference using multimodal data[C]//Proceedings of the ACM Web Conference 2023, Austin TX USA, April 30 , Association for Computing Machinery,2023: 4029-4040. |
71 | Ratledge N, Cadamuro G, de la Cuesta B, et al. Using machine learning to assess the livelihood impact of electricity access[J].Nature, 2022, 611: 491-495. |
72 | Onnela J P, Saramäki J, Hyvönen J, et al. Structure and tie strengths in mobile communication networks[J]. Proceedings of the National Academy of Sciences, 2007, 104(18): 7332-7336. |
73 | Filho R M, Borges G R, Almeida J M, et al. Inferring user social class in online social networks[C]//Proceedings of the 8th workshop on social network mining and analysis, New York, United States, August 24 , Association for Computing Machinery,2014: 1-5. |
74 | Dunbar R I, Arnaboldi V, Conti M, et al. The structure of online social networks mirrors those in the offline world[J]. Social Networks, 2015, 43: 39-47. |
75 | Steele J E, Pezzulo C, Albert M, et al. Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings[J]. Humanities and Social Sciences Communications, 2021, 8:288-299. |
76 | Deville P, Song C, Eagle N, et al. Scaling identity connects human mobility and social interactions[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7047-7052. |
77 | Smith-Clarke C, Mashhadi A, Capra L. Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Ontario, Canada, April 27,Association for Computing Machinery.2014: 511-520. |
78 | Wang X, Pei T, Song C, et al. How does socioeconomic status influence social relations? A perspective from mobile phone data[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 615: 128612. |
79 | Eagle N, Macy M, Claxton R. Network diversity and economic development[J].Science, 2010, 328(5981): 1029-1031. |
80 | Gutierrez T, Krings G, Blondel V D. Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets[J]. ArXiv Preprint ArXiv,2013:13094496. |
81 | Mao H, Shuai X, Ahn Y Y, et al. Quantifying socio-economic indicators in developing countries from mobile phone communication data: Applications to Côte d’Ivoire[J]. EPJ Data Science, 2015, 4(1): 15-30. |
82 | Vaca Ruiz C, Quercia D, Aiello L M, et al. Taking Brazil's pulse: Tracking growing urban economies from online attention[C]//Proceedings of the 23rd International Conference on World Wide Web,Seoul, Korea, April 7 , Association for Computing Machinery,2014: 451-456. |
83 | Norbutas L, Corten R. Network structure and economic prosperity in municipalities: A large-scale test of social capital theory using social media data[J]. Social Networks, 2018, 52: 120-134. |
84 | Tóth G, Wachs J, Di Clemente R, et al. Inequality is rising where social network segregation interacts with urban topology[J]. Nature Communications, 2021, 12(1): 1143-1151. |
85 | Preoţiuc-Pietro D, Volkova S, Lampos V, et al. Studying user income through language, behaviour and affect in social media[J]. PLoS ONE, 2015, 10(9): e0138717. |
86 | Mikolov T, Chen K, Corrado G S, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the International Conference on Learning Representations,ICLR 2013,Scottsdale, Arizona, USA, May 2-4, 2013. |
87 | Lampos V, Aletras N, Geyti J K, et al. Inferring the socioeconomic status of social media users based on behaviour and language[C]//Proceedings of the Advances in Information Retrieval: 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23 , Springer International Publishing, 2016: 689-695. |
88 | Flekova L, Preoţiuc-Pietro D, Ungar L. Exploring stylistic variation with age and income on twitter[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, August 7-12 ,Association for Computational Linguistics,2016: 313-319. |
89 | Gimpel K, Schneider N, O’connor B, et al. Part-of-speech tagging for twitter: Annotation, features, and experiments[C]//Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, June 19-24 , Association for Computational Linguistics,2011: 42-47. |
90 | Coleman M, Liau T L. A computer readability formula designed for machine scoring[J]. Journal of Applied Psychology, 1975, 60(2): 283-284. |
91 | Flesch R. A new readability yardstick[J]. Journal of Applied Psychology, 1948, 32(3): 221-233. |
92 | Anderson J. Lix and rix: Variations on a little-known readability index[J]. Journal of Reading, 1983, 26(6): 490-496. |
93 | Heylighen F, Dewaele J M. Variation in the contextuality of language: An empirical measure[J]. Foundations of science, 2002, 7: 293-340. |
94 | Beinborn L, Zesch T, Gurevych I. Towards fine-grained readability measures for self-directed language learning [C]// Proceedings of Electronic Conference Proceedings, Lund, Sweden, October 25 , Proceedings of the SLTC workshop on NLP for CALL, 2012, 80: 11-19. |
95 | Quercia D, Ellis J, Capra L, et al. Tracking “gross community happiness” from tweets[C]//Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, Seattle Washington, USA, February 11 , Association for Computing Machinery,2012: 965-968. |
96 | Lerman K, Arora M, Gallegos L, et al. Emotions, demographics and sociability in twitter interactions[C]//Proceedings of the International AAAI Conference on Web and Social Media, Cologne, Germany,May 17-20,2016: 201-210. |
97 | Thelwall M, Buckley K, Paltoglou G. Sentiment strength detection for the social web[J]. Journal of the American Society for Information Science and Technology, 2012, 63(1): 163-173. |
98 | Warriner A B, Kuperman V, Brysbaert M. Norms of valence, arousal, and dominance for 13,915 English lemmas[J]. Behavior Research Methods, 2013, 45: 1191-1207. |
99 | Wesolowski A, Eagle N, Noor A M, et al. The impact of biases in mobile phone ownership on estimates of human mobility[J]. Journal of The Royal Society Interface, 2013, 10(81): 20120986. |
100 | 王璐, 孟小峰. 位置大数据隐私保护研究综述 [J]. 软件学报, 2014, 25(4): 693-712. |
Wang L, Meng X F. Location privacy preservation in big data era: A survey[J]. Journal of Software, 2014, 25(4): 693-712. | |
101 | Munoz Boudet A M, Buitrago P, Leroy De La Briere B, et al. Gender differences in poverty and household composition through the life-cycle: A global perspective [R]. Working Paper,The World Bank, 2018. |
[1] | Wei Gu, Yajin Liu, Feng Susan Lu, Xiangbin Yan. AI-Driven Decision Sciences: Application, Perception and Bias [J]. Chinese Journal of Management Science, 2025, 33(5): 99-112. |
[2] | Wei Ge, Han Xiao. Artificial Intelligence, Household Consumption and Economic Singularity: Based on the Perspective of Optimizing Redistribution Policy [J]. Chinese Journal of Management Science, 2025, 33(3): 93-106. |
[3] | Feng Shi, Yang Yang, Yun Yuan, Jianmin Jia. Marketing Transformation in the Age of Artificial Intelligence [J]. Chinese Journal of Management Science, 2025, 33(1): 111-123. |
[4] | Haiyan Wang, Zhaohan Sheng. Modeling of Complex System Management Scenarios Driven by Big Data: Techniques and Processes [J]. Chinese Journal of Management Science, 2025, 33(1): 22-33. |
[5] | Xiangpei Hu, Yaxian Zhou. Review of Research on Economics and Management Based on Generative Artificial Intelligence [J]. Chinese Journal of Management Science, 2025, 33(1): 76-97. |
[6] | Xiuli Meng,Jing Yang,Bo Liu. Competition Strategy of Crowdsourcing Logistics Service Quality Based on Big Data Technology [J]. Chinese Journal of Management Science, 2024, 32(4): 130-140. |
[7] | YAN Yu-meng, XIONG Xiong, LU Lei, ZHANG Wei, ZHANG Yong-jie. From “A Peek” to “A Strategic View”: Individual Investor Behaviors in the Age of Big Data [J]. Chinese Journal of Management Science, 2023, 31(9): 244-254. |
[8] | ZHAO Hui, ZHANG Tao, TANG Ke. How does Agglomeration Affect Entrepreneurial Activities in the North and South? Evidence from High Frequency Full Enterprise Big Data [J]. Chinese Journal of Management Science, 2023, 31(6): 231-240. |
[9] | YANG Shan-lin, LI Xiao-jian, ZHANG Qiang, JIAO Jian-ling, YANG Chang-hui. Artificial Intelligence and Management Transformation [J]. Chinese Journal of Management Science, 2023, 31(6): 1-11. |
[10] | SONG Jin-bo, ZHOU Yu-shan, HE Qiu-ying. The Impact of Emotional Load on Service Quality and Operational Efficiency of Online Political Inquiry Platform—Evidence from Textual Data [J]. Chinese Journal of Management Science, 2023, 31(3): 133-142. |
[11] | LUO Jian, TANG Jia-fu, YU Qing-ya, WU Zhi-qiao. The Division of O2O Takeaway Business Zone and Discovery of Customer Demand Distribution Law [J]. Chinese Journal of Management Science, 2023, 31(3): 58-68. |
[12] | QIU Ruo-zhen, WU Xu, SUN Yue, ZHU Zhu. Robust Optimization and Coordination Model for Supply Chain with Big Data Investment under Uncertain Demand [J]. Chinese Journal of Management Science, 2023, 31(1): 128-141. |
[13] | XU Xuan-hua, MA Zhi-peng, CHEN Xiao-hong. Dynamic Evolution Research on Emergency Decision Quality of Large Group Based on the Public Preferences Big Data [J]. Chinese Journal of Management Science, 2022, 30(7): 140-149. |
[14] | YUAN Xianzhi, ZHOU Yun-peng, YAN Cheng-xing, LIU Hai-yang, QIAN Guo-qi, WANG Fan, WEI Li-jian, LI Zhi-yong, LI Bo, David Li, ZENGTu. The Framework for the Risk Feature Extraction Method on Corporate Financial Fraud George [J]. Chinese Journal of Management Science, 2022, 30(3): 43-54. |
[15] | XING Gen-shang, LU Fang, ZHOU Zhong-bao, YE Jin-long. Can the Right of Data Portability Govern Big Data-based Price Discrimination? [J]. Chinese Journal of Management Science, 2022, 30(3): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|