1 |
Protopapadakis F. Macroeconomic factors do influence aggregate stock returns[J]. Review of Financial Studies, 2002, 15(3):751-782.
|
2 |
Du Y D, Cai Y, Chen M X, et al. A novel divide-and-conquer model for CPI prediction using ARIMA, gray model and BPNN[J]. Procedia Computer Science, 2014,31:842-851.
|
3 |
Sultana K, Rahim A, Moin N, et al. Forecasting inflation and economic growth of pakistan by using two time series methods[J]. International Journal of Business and Economics Research,2013,2(6):174-178.
|
4 |
周生宝,王雪标,郭俊芳.我国通胀预期与通胀的动态关联性——基于宏观金融模型的研究[J].中国管理科学,2014,22(11):27-35.
|
|
Zhou S B, Wang X B, Guo J F. The dynamic relevance of inflation expectations and actual inflation: An analysis based on the macro-finance model[J]. Chinese Journal of Management Science,2014,22(11):27-35.
|
5 |
龚玉婷,陈强,郑旭.基于混频模型的CPI短期预测研究[J].统计研究,2014,31(12):25-31.
|
|
Gong Y T, Chen Q, Zheng X. Short-term forecasting of CPI based on MIDAS models[J].Statistical Research,2014,31(12):25-31.
|
6 |
Li X, Shang W, Wang S Y, et al. A MIDAS modelling framework for Chinese inflation index prediction incorporating Google search data[J]. Electronic Commerce Research & Applications,2015,14(16):112-125.
|
7 |
张劲帆,刚健华,钱宗鑫,等.基于混频向量自回归模型的宏观经济预测[J].金融研究,2018(7):34-48.
|
|
Zhang J F, Gang J H, Qian Z X, et al. Macro-economic forecasts based on the MF-BVAR[J]. Financial Research,2018(7):34-48.
|
8 |
张虎,沈寒蕾,夏伦.基于多源异步混频CPI数据的预测方法研究[J].数量经济技术经济研究,2020,37(10):149-168.
|
|
Zhang H, Shen H L, Xia L. Research on CPI prediction based on Multi-source asynchronous mixed sampling data[J].Journal of Quantitative & Technological Economics,2020,37(10):149-168.
|
9 |
Lin K Y, Xun C, Wang F, et al. Research on the influence of volatility of international energy commodity futures market on CPI in China[J]. Complexity, 2021, 2021(1): 7069193.
|
10 |
Zahara S, Ilmiddafiq M B.Prediksi indeks harga konsumen menggunakan metode long short term memory (LSTM) berbasis cloud computing[J].Journal RESTI (Rekayasa Sistem Dan Teknologi Informasi),2019,3(3):357-363.
|
11 |
Acosta M A. Machine learning core inflation[J]. Economics Letters,2018,169:47-50.
|
12 |
陈梦根,任桃萍.新常态经济的CPI预测模型——构建与实证比较[J].调研世界,2020(2):3-8.
|
|
Chen M G, Ren T P. CPI predictive model for new normal economy:Construction and empirical comparison[J]. The World of Survey and Research,2020(2):3-8.
|
13 |
陈彦斌,刘玲君,陈小亮.中国通货膨胀率预测——基于LSTM模型与BVAR模型的对比分析[J].财经问题研究,2021(6):18-29.
|
|
Chen Y B, Liu L J, Chen X L. Prediction of China's inflation rate: A comparative analysis based on the LSTM model and the BVAR model[J]. Research on Financial and Economic Issues, 2021(6): 18-29.
|
14 |
杨青,王晨蔚.基于深度学习LSTM神经网络的全球股票指数预测研究[J].统计研究,2019,36(3):65-77.
|
|
Yang Q, Wang C W. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019,36(3):65-77.
|
15 |
唐晓彬,董曼茹,张瑞.基于机器学习LSTM&US模型的消费者信心指数预测研究[J].统计研究,2020,37(7):104-115.
|
|
Tang X B, Dong M R, Zhang R. Research on the prediction of consumer confidence index based on machine learning LSTM&US model[J]. Statistical Research,2020,37(7):104-115.
|
16 |
贺小伟,徐靖杰,王宾,等.基于GRU-LSTM组合模型的云计算资源负载预测研究[J].计算机工程,2022,48(5):11-17+34.
|
|
He X W, Xu J J, Wang B, et al. Research on cloud computing resource load forecasting based on GRU-LSTM Combination model[J]. Computer Engineering,2022,48(5):11-17+34.
|
17 |
李冰荣,皮德常,候梦如.基于CNN和LSTM的移动对象目的地预测[J].计算机科学,2021,48(4):70-77.
|
|
Li B R, Pi D C, Hou M R. Destination prediction of moving objects based on convolutional neural networks and long-short term memory[J]. Computer Science,2021,48(4):70-77.
|
18 |
贺毅岳,李萍,韩进博.基于CEEMDAN-LSTM的股票市场指数预测建模研究[J].统计与信息论坛,2020,35(6):34-45.
|
|
He Y Y, Li P, Han J B. Research on predictive modeling on stock market index based on CEEMDAN-LSTM[J].Journal of Statistics and Information,2020,35(6):34-45.
|
19 |
史学良,李梁,赵清华.基于改进LSTM网络的空气质量指数预测[J].统计与决策,2021,37(16):57-60.
|
|
Shi X L, Li L, Zhao Q H. Air quality index prediction based on improved LSTM network[J]. Statistics & Decision,2021,37(16):57-60.
|
20 |
陶志勇,李小兵,刘影,等.基于双向长短时记忆网络的改进注意力短文本分类方法[J].数据分析与知识发现,2019,3(12):21-29.
|
|
Tao Z Y, Li X B, Liu Y, et al. Classifying short texts with improved-attention based bidirectional long memory network[J].Data Analysis and Knowledge Discovery,2019,3(12):21-29.
|
21 |
周瑛,刘越,蔡俊.基于注意力机制的微博情感分析[J].情报理论与实践,2018,41(3):89-94.
|
|
Zhou Y, Liu Y, Cai J. Sentiment analysis of Micro-blogs based on attention mechanism[J]. Information Studies: Theory & Application,2018,41(3):89-94.
|
22 |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
|
23 |
王振中,陈松蹊,涂云东.中国居民消费价格指数的动态结构研究及中美量化比较[J].数理统计与管理, 2023,42(1):109-126.
|
|
Wang Z Z, Chen S J, Tu Y D. Analyzing Chinese consumer price index comparatively with that of United States[J]. Journal of Applied Statistics and Management, 2023,42(1): 109-126.
|
24 |
唐晓彬,董曼茹,徐荣.大数据背景下CPI预测问题的文本挖掘技术设计与应用[J].统计研究,2021,38(8):146-160.
|
|
Tang X B, Dong M R, Xu R. Design and application of text mining techniques for CPI prediction based on big data[J]. Statistical Research,2021,38(8):146-160.
|
25 |
梁方,沈诗涵,黄卓.预测中国宏观经济变量:专家与模型的组合预测[J].金融研究,2021(7):58-76.
|
|
Liang F, Shen S H, Huang Z. Forecasts of macroeconomic variables in China: Combination forecasts of surveys and models[J]. Journal of Financial Research,2021(7):58-76.
|
26 |
Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM[J]. Chaos Solitons & Fractals, 2020,140:110-212.
|