Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (5): 99-112.doi: 10.16381/j.cnki.issn1003-207x.2023.1896
Previous Articles Next Articles
Wei Gu1, Yajin Liu1, Feng Susan Lu2, Xiangbin Yan3()
Received:
2023-11-09
Revised:
2024-04-01
Online:
2025-05-25
Published:
2025-06-04
Contact:
Xiangbin Yan
E-mail:xbyan@gdufs.edu.cn
CLC Number:
Wei Gu, Yajin Liu, Feng Susan Lu, Xiangbin Yan. AI-Driven Decision Sciences: Application, Perception and Bias[J]. Chinese Journal of Management Science, 2025, 33(5): 99-112.
"
研究方向 | 研究领域 | 作者 |
---|---|---|
应用 (application) | 运营管理 (operation management) | Alley等[ |
市场营销 (marketing) | Ban和Keskin[ | |
会计 (accounting) | Bao等[ | |
金融 (finance) | Alsabah等[ | |
医疗管理 (healthcare management) | Chen[ | |
感知 (perception) | 正面 (trust) | Logg等[ |
负面 (aversion, distrust) | Crolic等[ | |
依据场景 (context-dependent) | Mende等[ | |
偏见 (bias) | 现象 (phenomenon) | Edelman和Luca[ |
来源 (sources) | Obermeyer等[ | |
解决方案 (possible solutions) | Samorani等[ |
1 | 任之光,李金,赵海川,等.大数据驱动的管理决策:研究范式与发展领域[J].管理科学学报, 2023, 26(8): 152-158. |
Ren Z G, Li J, Zhao H C, et al. Big data-driven management and decision sciences:The research paradigm and directions[J]. Journal of Management Sciences in China, 2023, 26(8): 152-158. | |
2 | 陈东,秦子洋. 人工智能与包容性增长——来自全球工业机器人使用的证据[J]. 经济研究, 2022, 57(4): 85-102. |
Chen D, Qin Z Y. Artificial intelligence and inclusive growth: Evidence from international robot data[J]. Economic Research Journal, 2022, 57(4): 85-102. | |
3 | 郭凯明,王钰冰. 人工智能技术方向、时间配置结构转型与人类劳动变革远景[J]. 中国工业经济, 2022(12): 33-51. |
Guo K M, Wang Y B. Direction of artificial intelligence progress, transformation of time allocation and the prospect of human labor evolution[J]. China Industrial Economics, 2022(12): 33-51. | |
4 | 王永钦,董雯. 机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J]. 经济研究, 2020, 55(10): 159-175. |
Wang Y Q, Dong W. How the rise of robots has affected China’s labor market? Evidence from China’s listed manufacturing firms[J]. Economic Research Journal, 2020, 55(10): 159-175. | |
5 | 刘新生,褚建勋.人工智能的企业道德责任及其规制[J].科学学研究, 2023, 41(4): 586-595. |
Liu X S, Chu J X. The corporate moral responsibility of artificial intelligence and its regulation[J]. Studies in Science of Science, 2023, 41(4): 586-595. | |
6 | Mikalef P, Pappas I O, Krogstie J, et al. Big data analytics capabilities:A systematic literature review and research agenda[J]. Information Systems and E-business Management, 2018, 16: 547-578. |
7 | Duan Y, Edwards J S, Dwivedi Y K. Artificial intelligence for decision making in the era of big data-evolution, challenges and research agenda[J]. International Journal of Information Management, 2019, 48: 63-71. |
8 | Mele C, Spena T R, Kaartemo V, et al. Smart nudging: How cognitive technologies enable choice architectures for value co-creation[J]. Journal of Business Research, 2021, 129: 949-960. |
9 | Gijsbrechts J, Boute R N, Van Mieghem J A, et al. Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems[J]. Manufacturing & Service Operations Management, 2022, 24(3): 1349-1368. |
10 | 王芳,王宣艺,陈硕. 经济学研究中的机器学习:回顾与展望[J]. 数量经济技术经济研究, 2020, 37(4): 146-164. |
Wang F, Wang X Y, Chen S. Machine learning in economics research: Review and prospective[J]. Journal of Quantitative & Technological Economics, 2020, 37(4): 146-164. | |
11 | 马捷,郝志远. 机器学习视域下融合情感元素的社交网络信息交互度量化分析[J]. 情报学报, 2021, 40(7): 687-696. |
Ma J, Hao Z Y. Quantitatively analyzing social network information interaction: Integrating the emotional elements from machine learning’s perspective[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(7): 687-696. | |
12 | 李舒沁,王灏晨,汪寿阳.人工智能背景下制造业劳动力结构影响研究——以工业机器人发展为例[J].管理评论,2021, 33(3):307-314. |
Li S Q, Wang H C, Wang S Y. Research on the factors that influence the labor structure of the manufacturing industry in the context of artificial intelligence:Taking the development of industrial robots as an example[J]. Management Review, 2021, 33(3):307-314. | |
13 | 李新娥,喻子君,夏静 等.人工智能技术应用下制造业企业就业效应研究——基于101家上市公司的实证检验[J].中国软科学,2021(S1):277-286. |
Li X E, Yu Z J, Xia J, et al. Research on the employment effect of manufacturing enterprises under the application of artificial intelligence technology: Based on the empirical test of 101 listed companies[J]. China Soft Science, 2021(S1): 277-286. | |
14 | Cao Z, Li M, Pavlou P A. AI in business research[J]. Decision Sciences Journal, 2024, 55(6): 518-532. |
15 | Ban G Y, Rudin C. The big data newsvendor: Practical insights from machine learning[J]. Operations Research, 2019, 67(1): 90-108. |
16 | Chuang H H C, Chou Y C, Oliva R. Cross‐item learning for volatile demand forecasting: An intervention with predictive analytics[J]. Journal of Operations Management, 2021, 67(7): 828-852. |
17 | 熊浩,鄢慧丽. 数据驱动外卖平台智能派单的实现机理研究[J]. 南开管理评论, 2022, 25(2): 15-25. |
Xiong H, Yan H L. Research on the data-driven mechanism of intelligent order dispatching of takeaway platform[J]. Nankai Business Review, 2022, 25(2): 15-25. | |
18 | Oroojlooyjadid A, Nazari M R, Snyder L V, et al. A deep q-network for the beer game: Deep reinforcement learning for inventory optimization[J]. Manufacturing & Service Operations Management, 2022, 24(1): 285-304. |
19 | Bodendorf F, Sauter M, Franke J. A mixed methods approach to analyze and predict supply disruptions by combining causal inference and deep learning[J]. International Journal of Production Economics, 2023, 256: 108708. |
20 | Glaeser C K, Fisher M, Su X. Optimal retail location: Empirical methodology and application to practice: Finalist-2017 m&som practice-based research competition[J]. Manufacturing & Service Operations Management, 2019, 21(1): 86-102. |
21 | Senoner J, Netland T, Feuerriegel S. Using explainable artificial intelligence to improve process quality: Evidence from semiconductor manufacturing[J]. Management Science, 2022, 68(8): 5704-5723. |
22 | Alley M, Biggs M, Hariss R, et al. Pricing for heterogeneous products: Analytics for ticket reselling[J]. Manufacturing & Service Operations Management, 2023, 25(2): 409-426. |
23 | Tong S, Jia N, Luo X, et al. The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance[J]. Strategic Management Journal, 2021, 42(9): 1600-1631. |
24 | Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. |
25 | Ban G Y, Keskin N B. Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity[J]. Management Science, 2021, 67(9): 5549-5568. |
26 | Yang C, Feng Y, Whinston A. Dynamic pricing and information disclosure for fresh produce: An artificial intelligence approach[J]. Production and Operations Management, 2022, 31(1): 155-171. |
27 | Reisenbichler M, Reutterer T, Schweidel D A, et al. Frontiers: Supporting content marketing with natural language generation[J]. Marketing Science, 2022, 41(3): 441-452. |
28 | Yoganarasimhan H. Search personalization using machine learning[J]. Management Science, 2020, 66(3): 1045-1070. |
29 | 史达,王乐乐,衣博文. 在线评论有用性的深度数据挖掘——基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23(5): 64-75. |
Shi D, Wang L L, Yi B W. Deep data mining for online reviews usefulness: Hotel reviews data on TripAdvisor[J]. Nankai Business Review, 2020, 23(5): 64-75. | |
30 | Boughanmi K, Ansari A. Dynamics of musical success: A machine learning approach for multimedia data fusion[J]. Journal of Marketing Research, 2021, 58(6): 1034-1057. |
31 | 钱明辉,徐志轩. 基于机器学习的消费者品牌决策偏好动态识别与效果验证研究[J]. 南开管理评论, 2019, 22(3): 66-76. |
Qian M H, Xu Z X. A study of dynamic recognition of consumer brand decision-making preference based on machine learning method[J]. Nankai Business Review, 2019, 22(3): 66-76. | |
32 | Lau R Y K, Zhang W, Xu W. Parallel aspect‐oriented sentiment analysis for sales forecasting with big data[J]. Production and Operations Management, 2018, 27(10): 1775-1794. |
33 | 范文芳,王千. 个性化智能推荐对消费者在线冲动购买意愿的影响研究[J]. 管理评论, 2022, 34(12): 146-156. |
Fan W F, Wang Q. Research on the influence of personalized intelligent recommendation on consumers’online impulse buying intention[J]. Management Review, 2022, 34(12): 146-156. | |
34 | Karlinsky-Shichor Y, Netzer O. Automating the b2b salesperson pricing decisions: A human-machine hybrid approach[J]. Marketing Science,2024, 43(1): 138-157. |
35 | Schanke S, Burtch G, Ray G. Estimating the impact of “humanizing” customer service chatbots[J]. Information Systems Research, 2021, 32(3): 736-751. |
36 | Dwivedi Y K, Pandey N, Currie W, et al. Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: Practices, challenges and research agenda[J]. International Journal of Contemporary Hospitality Management, 2024, 36(1): 1-12. |
37 | Pickard M D, Schuetzler R, Valacich J S, et al. Innovative accounting interviewing: A comparison of real and virtual accounting interviewers[J]. The Accounting Review, 2020, 95(6): 339-366. |
38 | Bao Y, Ke B, Li B, et al. Detecting accounting fraud in publicly traded U.S. firms using a machine learning approach[J]. Journal of Accounting Research, 2022, 60(4): 1635-1646. |
39 | Brown N C, Crowley R M, Elliott W B. What are you saying?using topic to detect financial misreporting[J]. Journal of Accounting Research, 2020, 58(1): 237-291. |
40 | 刘云菁,伍彬,张敏. 上市公司财务舞弊识别模型设计及其应用研究——基于新兴机器学习算法[J]. 数量经济技术经济研究, 2022, 39(7): 152-175. |
Liu Y J, Wu B, Zhang M. Financial fraud recognition model and application:Based on emerging machine learning algorithms[J]. The Journal of Quantitative & Technical Economics, 2022, 39(7): 152-175. | |
41 | 高锦萍,白羽新,高居平,等.人工智能时代的会计伦理:内涵、转向与考量[J].会计研究,2022(3): 17-27. |
Gao J P, Bai Y X, Gao J P, et al. Accounting ethics in the era of artificial intelligence: Connotation, turn and consideration[J]. Accounting Research, 2022(3): 17-27. | |
42 | 张一林,郁芸君,陈珠明. 人工智能、中小企业融资与银行数字化转型[J]. 中国工业经济, 2021(12): 69-87. |
Zhang Y L, Yu Y J, Chen Z M. Artificial intelligence, SME financing and bank digitalization[J]. China Industrial Economics, 2021(12): 69-87. | |
43 | Avramov D, Cheng S, Metzker L. Machine learning vs. economic restrictions: Evidence from stock return predictability[J]. Management Science, 2023, 69(5): 2587-2619. |
44 | Alsabah H, Capponi A, Ruiz Lacedelli O, et al. Robo-advising: Learning investors’risk preferences via portfolio choices[J]. Journal of Financial Econometrics, 2021, 19(2): 369-392. |
45 | Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273. |
46 | Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. |
47 | 陆瑶,施函青. 我国科技企业融资的决定因素研究——基于科创板企业的机器学习分析[J]. 金融研究, 2022(9): 132-151. |
Lu Y, Shi H Q. Determinants of financing for high-tech enterprises in China: Machine learning analysis based on the STAR market[J]. Journal of Financial Research, 2022(9): 132-151. | |
48 | 许雪晨,田侃.一种基于金融文本情感分析的股票指数预测新方法[J]. 数量经济技术经济研究, 2021, 38(12): 124-145. |
Xu X C, Tian K. A novel financial text sentiment analysis-based approach for stock index prediction[J]. The Journal of Quantitative & Technical Economics, 2021, 38(12): 124-145. | |
49 | Netzer O, Lemaire A, Herzenstein M. When words sweat: Identifying signals for loan default in the text of loan applications[J]. Journal of Marketing Research, 2019, 56(6): 960-980. |
50 | Fu R, Huang Y, Singh P V. Crowds, lending, machine, and bias[J]. Information Systems Research, 2021, 32(1): 72-92. |
51 | 杨子晖,张平淼,林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022(8): 152-170. |
Yang Z H, Zhang P M, Lin S H. Systemic risk and corporate financial distress forecasting from the new perspective of machine learning[J]. Journal of Financial Research, 2022(8): 152-170. | |
52 | Mogaji E, Balakrishnan J, Nwoba A C, et al. Emerging-market consumers’interactions with banking chatbots[J]. Telematics and Informatics, 2021, 65: 101711. |
53 | Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. |
54 | Chen X, Xie H, Li Z, et al. Information fusion and artificial intelligence for smart healthcare: A bibliometric study[J]. Information Processing & Management, 2023, 60(1): 103113. |
55 | Lou B, Wu L. AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms[J]. MIS Quarterly, 2021, 45(3), 1451-1482. |
56 | Ganju K K, Atasoy H, McCullough J, et al. The role of decision support systems in attenuating racial biases in healthcare delivery[J]. Management Science, 2020, 66(11): 5171-5181. |
57 | Cheng Z, Wang W, Lu J, et al. Classifying the traffic state of urban expressways:A machine-learning approach[J]. Transportation Research Part A: Policy and Practice, 2020, 137: 411-428. |
58 | Ko G Y, Shin D, Auh S, et al. Learning outside the classroom during a pandemic: Evidence from an artificial intelligence-based education App[J]. Management Science, 2023, 69(6): 3616-3649. |
59 | Chang X, Huang Y, Li M, et al. Efficient detection of environmental violators: a big data approach[J]. Production and Operations Management, 2021, 30(5): 1246-1270. |
60 | Zhang S, Mehta N, Singh P V, et al. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality?An analysis in the context of airbnb[J]. Marketing Science, 2021, 40(5): 813-820. |
61 | 李训虎. 刑事司法人工智能的包容性规制[J]. 中国社会科学, 2021(2): 42-62+205. |
Li X H. Inclusive regulation of artificial intelligence in criminal justice[J]. Social Sciences in China, 2021 (2): 42-62+205. | |
62 | Brynjolfsson E, Hui X, Liu M. Does machine translation affect international trade?Evidence from a large digital platform[J]. Management Science, 2019, 65(12): 5449-5460. |
63 | Kawaguchi K. When will workers follow an algorithm?A field experiment with a retail business[J]. Management Science, 2021, 67(3): 1670-1695. |
64 | Dietvorst B J, Simmons J P, Massey C.Algorithm aversion: People erroneously avoid algorithms after seeing them err[J]. Journal of Experimental Psychology: General, 2015, 144(1): 114-126. |
65 | Filiz I, Judek J R, Lorenz M, et al. Reducing algorithm aversion through experience[J]. Journal of Behavioral and Experimental Finance, 2021, 31: 100524. |
66 | Logg J M, Minson J A, Moore D A. Algorithm appreciation: People prefer algorithmic to human judgment[J]. Organizational Behavior and Human Decision Processes, 2019, 151: 90-103. |
67 | Liu H, Wang Y, Fan W, et al. Trustworthy AI: A computational perspective[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 14(1): 1-59. |
68 | Crolic C, Thomaz F, Hadi R, et al. Blame the bot: Anthropomorphism and anger in customer-chatbot interactions[J]. Journal of Marketing, 2022, 86(1): 132-148. |
69 | Kyung N, Kwon H E. Rationally trust, but emotionally? The roles of cognitive and affective trust in laypeople’s acceptance of AI for preventive care operations[J]. Production and Operations Management, 2022, DOI: 10.1111/poms.13785 . |
70 | Commerford B P, Dennis S A, Joe J R, et al. Man versus machine: Complex estimates and auditor reliance on artificial intelligence[J]. Journal of Accounting Research, 2022, 60(1): 171-201. |
71 | Kim J H, Kim M, Kwak D W, et al. Home-tutoring services assisted with technology: Investigating the role of artificial intelligence using a randomized field experiment[J]. Journal of Marketing Research, 2022, 59(1): 79-96. |
72 | 吴继飞,于洪彦,朱翊敏,等. 人工智能推荐对消费者采纳意愿的影响[J]. 管理科学, 2020, 33(5): 29-43. |
Wu J F, Yu H Y, Zhu Y M, et al. Impact of artificial intelligence recommendation on consumers’willingness to adopt[J]. Journal of Management Science, 2020, 33(5): 29-43. | |
73 | Mende M, Scott M L, van Doorn J, et al. Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses[J]. Journal of Marketing Research, 2019, 56(4): 535-556. |
74 | Garvey A M, Kim T W, Duhachek A. Bad news? Send an AI. Good news?Send a human[J]. Journal of Marketing, 2023, 87(1): 10-25. |
75 | 王欣,朱虹,姜帝,等. 人工智能产品“协助者”与“替代者”形象对消费者评价的影响[J]. 南开管理评论, 2021, 24(6): 39-49. |
Wang X, Zhu H, Jiang D, et al. The influence of “facilitators”vs.“substitutes” image of artificial intelligence products on consumer evaluation[J]. Nankai Business Review, 2021, 24(6): 39-49. | |
76 | Yalcin G, Lim S, Puntoni S, et al. Thumbs up or down: Consumer reactions to decisions by algorithms versus humans[J]. Journal of Marketing Research, 2022, 59(4): 696-717. |
77 | Longoni C, Cian L. Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect[J]. Journal of Marketing, 2022, 86(1): 91-108. |
78 | Ge R, Zheng Z, Tian X, et al. Human-robot interaction: When investors adjust the usage of robo-advisors in peer-to-peer lending[J]. Information Systems Research, 2021, 32(3): 774-785. |
79 | Lebovitz S, Lifshitz-Assaf H, Levina N. To engage or not to engage with AI for critical judgments: How professionals deal with opacity when using AI for medical diagnosis[J]. Organization Science, 2022, 33(1): 126-148. |
80 | Shin D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI[J]. International Journal of Human-Computer Studies, 2021, 146: 102551. |
81 | Dietvorst B J, Simmons J P, Massey C. Overcoming algorithm aversion: people will use imperfect algorithms if they can (even slightly) modify them[J]. Management Science, 2018, 64(3): 1155-1170. |
82 | Lehmann C A, Haubitz C B, Fügener A, et al. The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice[J]. Production and Operations Management, 2022, 31(9): 3419-3434. |
83 | Sun S, Lu L X, Lu S F, et al. When peers matter more: The dominance of social influence over algorithm accuracy in patient decision making[J]. Tuck School of Business Working Paper Forthcoming, 2024, DOI: http://dx.doi.org/10.2139/ssrn.4966406 . |
84 | Edelman B, Luca M, Svirsky D. Racial discrimination in the sharing economy: Evidence from a field experiment[J]. American Economic Journal: Applied Economics, 2017, 9(2): 1-22. |
85 | Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal?The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. |
86 | Lambrecht A, Tucker C. Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads[J]. Management Science, 2019, 65(7): 2966-2981. |
87 | Obermeyer Z, Powers B, Vogeli C, et al. Dissecting racial bias in an algorithm used to manage the health of populations[J]. Science, 2019, 366(6464): 447-453. |
88 | Choudhury P, Starr E, Agarwal R. Machine learning and human capital complementarities: Experimental evidence on bias mitigation[J]. Strategic Management Journal, 2020, 41(8): 1381-1411. |
89 | Tambe P, Cappelli P, Yakubovich V. Artificial intelligence in human resources management: Challenges and a path forward[J]. California Management Review, 2019, 61(4): 15-42. |
90 | 冉雅璇,李志强,刘佳妮,等.大数据时代社会科学研究方法的拓展——基于词嵌入技术的文本分析的应用[J].南开管理评论, 2022, 25(2): 47-58. |
Ran Y X, Li Z Q, Liu J N, et al. The development of social science research methods in the era of big data: An application of the word embeddings technique[J]. Nankai Business Review, 2022, 25(2): 47-58. | |
91 | Samorani M, Harris S L, Blount L G, et al. Overbooked and overlooked: Machine learning and racial bias in medical appointment scheduling[J]. Manufacturing & Service Operations Management, 2022, 24(6): 2825-2842. |
92 | Fu R, Aseri M, Singh P V, et al. “Un” fair machine learning algorithms[J]. Management Science, 2022, 68(6): 4173-4195. |
93 | 王林辉,胡晟明,董直庆. 人工智能技术会诱致劳动收入不平等吗——模型推演与分类评估[J]. 中国工业经济, 2020(4): 97-115. |
Wang L H, Hu S M, Dong Z Q, Will artificial intelligence technology induce labor income inequality:Model deduction and classification evaluation[J]. China Industrial Economics, 2020(4): 97-115. | |
94 | 陈东,姚笛,郑玉璐.工业机器人应用、超级明星企业与劳动收入份额变动:“利好”与“隐忧”并存[J].中国工业经济,2024(5): 97-115. |
Chen D, Yao D, Zheng Y L. Industrial robot, superstar firms and labor income share changes: Coexistence of “boon” and “worry”[J]. China Industrial Economics, 2024(5): 97-115. | |
95 | 陈媛媛,张竞,周亚虹.工业机器人与劳动力的空间配置[J].经济研究, 2022, 57(1): 172-188. |
Chen Y Y, Zhang J, Zhou Y H. Industrial robots and spatial allocation of labor[J]. Economic Research Journal, 2022, 57(1): 172-188. | |
96 | 王林辉,钱圆圆,宋冬林,等.机器人应用的岗位转换效应及就业敏感性群体特征——来自微观个体层面的经验证据[J].经济研究, 2023, 58(7): 69-85. |
Wang L H, Qian Y Y, Song D L, et al. The job transition effects and employment sensitivity among specific groups of robot applications: Empirical evidence from a micro-individual level perspective[J]. Economic Research Journal, 2023,58(7): 69-85. | |
97 | 王晓娟,朱喜安,王颖. 工业机器人应用对制造业就业的影响效应研究[J]. 数量经济技术经济研究, 2022, 39(4): 88-106. |
Wang X J, Zhu X A, Wang Y. The impact of robot application on manufacturing employment[J]. The Journal of Quantitative & Technical Economics, 2022, 39(4): 88-106. | |
98 | 郭峰,陶旭辉. 机器学习与社会科学中的因果关系:一个文献综述[J]. 经济学(季刊), 2023, 23(1): 1-17. |
Guo F, Tao X H. Machine learning and causal relationship in social science: A literature review[J]. China Economic Quarterly, 2023, 23(1): 1-17. | |
99 | 吴俊杰,刘冠男,王静远,等. 数据智能:趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149. |
Wu J J, Liu G N, Wang J Y, et al. Data intelligence: Trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149. | |
100 | Li M, Li T. AI automation and retailer regret in supply chains[J]. Production and Operations Management, 2022, 31(1): 83-97. |
101 | 余伊琦,冯羽,盖嘉. 不确定情境下消费者对人工智能和人工服务的运气感知与相对偏好[J]. 南开管理评论, 2022, 25(4): 155-165. |
Yu Y Q, Feng Y, Gai J. Preferences for AI versus human under uncertainty: The role of perceived luck[J]. Nankai Business Review,2022,25(4): 155-165. | |
102 | Cui R, Li M, Zhang S. AI and procurement[J]. Manufacturing & Service Operations Management, 2022, 24(2): 691-706. |
103 | 吴小龙,肖静华,吴记. 人与AI协同的新型组织学习:基于场景视角的多案例研究[J]. 中国工业经济, 2022(2): 175-192. |
Wu X L, Xiao J H, Wu J. New organizational learning for human-AI collaboration: A multi-case study from a scenario perspective[J]. China Industrial Economics, 2022(2): 175-192. | |
104 | Fügener A, Grahl J, Gupta A, et al. Cognitive challenges in human-artificial intelligence collaboration: Investigating the path toward productive delegation[J]. Information Systems Research, 2022, 33(2): 678-696. |
105 | 程聪,严璐璐,曹烈冰.大数据决策中数据结构转变:基于杭州城市大脑“交通治堵”应用场景的案例分析[J].管理世界, 2023, 39(12): 165-185. |
Cheng C, Yan L L, Cao L B. Data structure transformation in big data decision-making: A case study based on the hangzhou city brain’s “traffic congestion alleviation” application scenario[J]. Journal of Management World, 2023, 39(12): 165-185. | |
106 | 孔祥维,王子明,王明征,等. 人工智能使能系统的可信决策:进展与挑战[J]. 管理工程学报, 2022, 36(6): 1-14. |
Kong X W, Wang Z M, Wang M Z, et al. Trustworthy decision-making in artificial intelligence-enabled systems: Progress and challenges[J]. Journal of Industrial Engineering and Engineering Management, 2022, 36(6): 1-14. | |
107 | 曾大军,张柱,梁嘉琦,等. 机器行为与人机协同决策理论和方法[J]. 管理科学, 2021, 34(6): 55-59. |
Zeng D J, Zhang Z, Liang J Q, et al. Machine behavior and human-machine collaboration decision: Theory and methods[J]. Journal of Management Science, 2021, 34(6): 55-59. | |
108 | Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. |
109 | 吴丹,刘静. 人工智能时代的算法素养:内涵剖析与能力框架构建[J]. 中国图书馆学报, 2022, 48(6): 43-56. |
Wu D, Liu J. Algorithmic literacy in the era of artificial intelligence: Connotation analysis and competency framework construction[J]. Journal of Library Science in China, 2022, 48(6): 43-56. | |
110 | 姜李丹,薛澜. 我国新一代人工智能治理的时代挑战与范式变革[J]. 公共管理学报, 2022, 19(2): 1-11. |
Jiang L D, Xue L. The current challenges and paradigm transformation of new-generation AI governance in China[J]. Journal of Public Management, 2022, 19(2): 1-11. | |
111 | 宋晓兵,何夏楠. 人工智能定价对消费者价格公平感知的影响[J]. 管理科学, 2020, 33(5): 3-16. |
Song X B, He X N. The effect of artificial intelligence pricing on consumers’perceived price fairness[J]. Journal of Management Science, 2020, 33(5): 3-16. | |
112 | Sun J, Zhang D J, Hu H, et al. Predicting human discretion to adjust algorithmic prescription: A large-scale field experiment in warehouse operations[J]. Management Science, 2022, 68(2): 846-865. |
113 | Srinivasan R, Sarial-Abi G. When algorithms fail: Consumers’responses to brand harm crises caused by algorithm errors[J]. Journal of Marketing, 2021, 85(5): 74-91. |
114 | Longoni C, Cian L, Kyung E J. Algorithmic transference: People overgeneralize failures of AI in the government[J]. Journal of Marketing Research, 2023, 60(1): 170-188. |
115 | 贾诗威,闫慧. 算法偏见概念、哲理基础与后果的系统回顾[J]. 中国图书馆学报, 2022, 48(6): 57-76. |
Jia S W, Yan H. A systematic review of concept, philosophy foundation and impacts of algorithmic bias[J]. Journal of Library Science in China, 2022, 48(6): 57-76. | |
116 | 季冬梅. 人工智能透明性原则的制度构建:范式选择与要素分析[J]. 科学学研究, 2022, 40(4): 611-618. |
Ji D M. Institutional construction of the transparency principle of artificial intelligence: Paradigm selection and elements analysis[J]. Studies in Science of Science, 2022, 40(4): 611-618. | |
117 | 杨善林,李霄剑,张强,等. 人工智能与管理变革[J]. 中国管理科学, 2023, 31(6): 1-11. |
Yang S L, Li X J, Zhang Q, et al. Artificial intelligence and management transformation[J]. Chinese Journal of Management Science, 2023, 31(6): 1-11. |
[1] | Manru Dong, Xiaobin Tang. Study on CPI Prediction by LSTM Model Based on Double-Layer Attention Mechanism [J]. Chinese Journal of Management Science, 2025, 33(5): 113-123. |
[2] | Suoyi Tan, Mengning Wang, Ye Tian, Jianguo Liu, Xin Lu. Data-Driven Models and Applications on Poverty Identification, Classification, and Prediction [J]. Chinese Journal of Management Science, 2025, 33(5): 124-137. |
[3] | Wei Ge, Han Xiao. Artificial Intelligence, Household Consumption and Economic Singularity: Based on the Perspective of Optimizing Redistribution Policy [J]. Chinese Journal of Management Science, 2025, 33(3): 93-106. |
[4] | Feng Shi, Yang Yang, Yun Yuan, Jianmin Jia. Marketing Transformation in the Age of Artificial Intelligence [J]. Chinese Journal of Management Science, 2025, 33(1): 111-123. |
[5] | Xingyi Li, Zhongfei Li, Qiqian Li, Yujun Liu, Wenjin Tang. A Review of Research on Asset Return Prediction Based on Machine Learning [J]. Chinese Journal of Management Science, 2025, 33(1): 311-322. |
[6] | Xiangpei Hu, Yaxian Zhou. Review of Research on Economics and Management Based on Generative Artificial Intelligence [J]. Chinese Journal of Management Science, 2025, 33(1): 76-97. |
[7] | Xinnan Lei,Lefan Lin,Binqing Xiao,Honghai Yu. Re-exploration of Small and Micro Enterprises' Default Characteristics Based on Machine Learning Models with SHAP [J]. Chinese Journal of Management Science, 2024, 32(5): 1-12. |
[8] | Yuting Yan,Wenjie Bi. A Data-driven Single-Period Newsvendor Problem Based on XGBoost Algorithm [J]. Chinese Journal of Management Science, 2024, 32(1): 260-267. |
[9] | YANG Shan-lin, LI Xiao-jian, ZHANG Qiang, JIAO Jian-ling, YANG Chang-hui. Artificial Intelligence and Management Transformation [J]. Chinese Journal of Management Science, 2023, 31(6): 1-11. |
[10] | SONG Jin-bo, ZHOU Yu-shan, HE Qiu-ying. The Impact of Emotional Load on Service Quality and Operational Efficiency of Online Political Inquiry Platform—Evidence from Textual Data [J]. Chinese Journal of Management Science, 2023, 31(3): 133-142. |
[11] | LIANG Mo, LI Hong-xiang, ZHANG Shun-ming. A Measure for Financial Distress based on ST Predictive Model and the Cross-section of Stock Returns [J]. Chinese Journal of Management Science, 2023, 31(2): 138-149. |
[12] | Peng ZHANG,Shi-li DANG,Mei-yu HUANG,Jing-xin LI. Two-stage Mean Semi-variance Portfolio Optimization with Stock Return Prediction Using Machine Learning [J]. Chinese Journal of Management Science, 2023, 31(12): 96-106. |
[13] | Jian ZHANG,Ting-yu XIE,Peng PENG,Hong-wei WANG. Research on the Correlation between Product Knowledge Attributes and Sales Forecast in Multi-Value Chain Collaborative Data Space of Manufacturing Industry [J]. Chinese Journal of Management Science, 2023, 31(11): 341-348. |
[14] | LIU De-wen, GAO Wei-he, MIN Liang-yu. The Impact of Readability and Attractiveness on Product Sales——Text Analysis Based on Movie Introduction [J]. Chinese Journal of Management Science, 2022, 30(6): 167-177. |
[15] | LIANG Chao, WEI Yu, MA Feng, LI Xia-fei. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods [J]. Chinese Journal of Management Science, 2022, 30(4): 30-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|