Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (1): 77-87.doi: 10.16381/j.cnki.issn1003-207x.2019.1105
• Articles • Previous Articles Next Articles
LU Wan-bo, KANG Jing-hao
Received:
2019-07-28
Revised:
2020-03-04
Online:
2022-01-20
Published:
2022-01-29
Contact:
鲁万波
E-mail:luwb@swufe.edu.cn
CLC Number:
LU Wan-bo, KANG Jing-hao. GAS-SKST-F Model and Its Application in High Frequency Multivariate Volatility Forecast[J]. Chinese Journal of Management Science, 2022, 30(1): 77-87.
[1] Bauwens L, Laurent S, Rombouts J V K. Multivariate GARCH models: A survey[J]. Journal of Applied Econometrics,2006,21(1):79-109. [2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica,2003,71(5): 579-625. [3] Engle R F, Gallo G M. A multiple indicators model for volatility using intra-daily data[J]. Journal of Econometrics,2006,131(3):3-27. [4] Shephard N, Sheppard K. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics,2010,25(2):197-231. [5] Hansen P R, Huang Z, Shek H H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics,2012,27(6):877-906. [6] 马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10):36-48.Ma Feng, Wei Yu, Huang Dengshi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China,2017, 20(10):36-48. [7] 吴鑫育,李心丹,马超群. 门限已实现随机波动率模型及其实证研究[J]. 中国管理科学, 2017, 25(3): 10-19.Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science,2017,25(3):10-19. [8] Golosnoy V, Gribisch B, Liesenfeld R. The conditional autoregressive wishart model for multivariate stock market volatility[J]. Journal of Econometrics,2012,167(1):211-223. [9] Paolo G, Hansen P R, Janus P, et al.Realized Wishart-GARCH: A score-driven multi-asset volatility model[J]. Journal of Financial Econometrics, 2019, 17(1):1-32. [10] Opschoor A, Janus P, Lucas A, et al. New HEAVY models for fat-tailed realized covariances and returns[J]. Journal of Business and Economic Statistics, 2018,36(4): 643-657. [11] 罗嘉雯, 陈浪南.多国股票市场的高频波动相关性研究[J]. 中国管理科学, 2018, 26(2):116-125.Luo Jiawen, Chen Langnan. The volatility co-movement of various stock markets based on high-frequency data[J].Chinese Journal of Management Science,2018,26(2):116-125. [12] Creal D, Koopman S J, André Lucas. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5):777-795. [13] Blasques F, Koopman S J, LucasA. Information theoretic optimality of observation driven time series models for continuous responses[J]. Biometrika, 2015, 102(2):325-343. [14] Lucas A, Schwaab B, Zhang X. Conditional Euro area sovereign default risk[J]. Journal of Business and Economic Statistics, 2014, 32(2):271-284. [15] Creal D, Schwaab B, Koopman S, et al. Observation driven mixed measurement dynamic factor models with an application to credit risk[J]. Review of Economics and Statistics, 2014,96(5):898-915. [16] 王天一,黄卓.Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报,2015, 18(5):79-86.Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China,2015, 18(5):79-86. [17] Oh D H, Patton A J. Time-varying systemic risk:Evidence from a dynamic copula model of CDS spreads[J]. Journal of Business andEconomic Statistics, 2018, 36(2):181-195. [18] 沈根祥, 邹欣悦.已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1):1-10.Shen Genxiang, Zou Xinyue. GAS-HEAVY model for realized measures of volatility and returns[J]. Chinese Journal of Management Science, 2019, 27(1):1-10. [19] Lambert P, Laurent S. Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations[R]. Working Paper,Université de Liège, 2001. [20] Gao Chunting, Zhou Xiaohua. Forecasting VaR and ES using dynamic conditional score models and skew student distribution [J]. Economic Modelling, 2016, 53:216-223. [21] Bauwens L, Laurent, S. A new class of multivariate skew densities with application to generalized autoregressive conditional heteroscedasticity models[J].Journal of Business and Economic Statistics, 2005,23(3):346-354. [22] Blasques F, Koopman S J, Lucas A. Maximum likelihood estimation for score-driven models[R]. Working Paper, Tinbergen Institute, 2017. |
[1] | LIU Chao, GUO Ya-dong. Systemic Financial Risk Spillover and Its Topology Analysis of Sector Indexes in China under a Multi-Scale View [J]. Chinese Journal of Management Science, 2022, 30(10): 46-59. |
[2] | LI Xia, LI Shou-wei. Non-linear Time Series Prediction Model Based on EMD and DVG and Its Application [J]. Chinese Journal of Management Science, 2022, 30(9): 275-286. |
[3] | QU Hui, SHEN Wei. Investor Attention and Covariance Forecasting in China’s Stock Markets——A Study Based on the MHAR Type Models [J]. Chinese Journal of Management Science, 2022, 30(7): 9-19. |
[4] | HUANG Jin-bo, WU Li-li, YOU Yi-ling. Mean-VaR Model Based on the Asymmetric Laplace Distribution [J]. Chinese Journal of Management Science, 2022, 30(5): 31-40. |
[5] | JIANG Chong-hui, LIU Lin. The Effectiveness of Momentum Factor Tracking Strategy: Evidence from China Stock Market [J]. Chinese Journal of Management Science, 2022, 30(5): 86-97. |
[6] | ZHU Li, LIU Xiang-li, YANG Xiao-guang. Does Investor Sentiment Affect the Price Dynamic Relationship of Stock Index Futures-spot Market? [J]. Chinese Journal of Management Science, 2022, 30(4): 52-62. |
[7] | HUANG Jin-bo, CHEN Ling-xi, DING Jie. Corporate Social Responsibility, Mediacoverage and Stock Pricecrash Risk [J]. Chinese Journal of Management Science, 2022, 30(3): 1-12. |
[8] | HU Zhi-jun, LING Ai-fan, YANG Chao. The Ambiguity Premium in China’s A-shares Market——The Analysis from Intra-day High Frequency Data [J]. Chinese Journal of Management Science, 2022, 30(1): 42-53. |
[9] | XIANG Cheng, YANG Jun. Who Gambles in the Market? A Study on Mutual Funds’ Preferences for Lottery-like Stocks [J]. Chinese Journal of Management Science, 2021, 29(11): 224-236. |
[10] | SHEN Genxiang, ZHANG Jingze. Dynamic Nelson-Siegel Term Structure Model with GARCH Error Terms and It’s Applications [J]. Chinese Journal of Management Science, 2021, 29(10): 1-11. |
[11] | CHEN Wen-bo, CHEN Lang-nan. Reactions of Stock Investors to Earnings Announcements——A Perspective from Gambling Preference [J]. Chinese Journal of Management Science, 2021, 29(9): 1-11. |
[12] | HUANG Yi-rong, BAI Yu-xuan. Is It “Intentional Herding” or “Spurious Herding”? The Influence of Network Contagion Degree on the Pricing Efficiency of Capital Market [J]. Chinese Journal of Management Science, 2021, 29(9): 12-24. |
[13] | WU Xin-yu, LI Xin-dan, MA Chao-qun. Measuring VaR Based on the Information Content of Option and High-frequency Data [J]. Chinese Journal of Management Science, 2021, 29(8): 13-23. |
[14] | QI Yue, LIAO Ke-zhi. Research on the Diversification Benefits of Commodity Futures under the Background of Commodity Financialization [J]. Chinese Journal of Management Science, 2021, 29(6): 10-22. |
[15] | WANG Jun-yong, LI Xin-dan, Lin Liang-cai. Research on the Cross-market and Cross-network Contagion Mechanism of Preventing and Controlling Financial Risk in the New Era [J]. Chinese Journal of Management Science, 2021, 29(6): 23-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|