Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (1): 77-87.doi: 10.16381/j.cnki.issn1003-207x.2019.1105
• Articles • Previous Articles Next Articles
LU Wan-bo, KANG Jing-hao
Received:2019-07-28
Revised:2020-03-04
Online:2022-01-20
Published:2022-01-29
Contact:
鲁万波
E-mail:luwb@swufe.edu.cn
CLC Number:
LU Wan-bo,KANG Jing-hao. GAS-SKST-F Model and Its Application in High Frequency Multivariate Volatility Forecast[J]. Chinese Journal of Management Science, 2022, 30(1): 77-87.
| [1] Bauwens L, Laurent S, Rombouts J V K. Multivariate GARCH models: A survey[J]. Journal of Applied Econometrics,2006,21(1):79-109. [2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica,2003,71(5): 579-625. [3] Engle R F, Gallo G M. A multiple indicators model for volatility using intra-daily data[J]. Journal of Econometrics,2006,131(3):3-27. [4] Shephard N, Sheppard K. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics,2010,25(2):197-231. [5] Hansen P R, Huang Z, Shek H H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics,2012,27(6):877-906. [6] 马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10):36-48.Ma Feng, Wei Yu, Huang Dengshi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China,2017, 20(10):36-48. [7] 吴鑫育,李心丹,马超群. 门限已实现随机波动率模型及其实证研究[J]. 中国管理科学, 2017, 25(3): 10-19.Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science,2017,25(3):10-19. [8] Golosnoy V, Gribisch B, Liesenfeld R. The conditional autoregressive wishart model for multivariate stock market volatility[J]. Journal of Econometrics,2012,167(1):211-223. [9] Paolo G, Hansen P R, Janus P, et al.Realized Wishart-GARCH: A score-driven multi-asset volatility model[J]. Journal of Financial Econometrics, 2019, 17(1):1-32. [10] Opschoor A, Janus P, Lucas A, et al. New HEAVY models for fat-tailed realized covariances and returns[J]. Journal of Business and Economic Statistics, 2018,36(4): 643-657. [11] 罗嘉雯, 陈浪南.多国股票市场的高频波动相关性研究[J]. 中国管理科学, 2018, 26(2):116-125.Luo Jiawen, Chen Langnan. The volatility co-movement of various stock markets based on high-frequency data[J].Chinese Journal of Management Science,2018,26(2):116-125. [12] Creal D, Koopman S J, André Lucas. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5):777-795. [13] Blasques F, Koopman S J, LucasA. Information theoretic optimality of observation driven time series models for continuous responses[J]. Biometrika, 2015, 102(2):325-343. [14] Lucas A, Schwaab B, Zhang X. Conditional Euro area sovereign default risk[J]. Journal of Business and Economic Statistics, 2014, 32(2):271-284. [15] Creal D, Schwaab B, Koopman S, et al. Observation driven mixed measurement dynamic factor models with an application to credit risk[J]. Review of Economics and Statistics, 2014,96(5):898-915. [16] 王天一,黄卓.Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报,2015, 18(5):79-86.Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China,2015, 18(5):79-86. [17] Oh D H, Patton A J. Time-varying systemic risk:Evidence from a dynamic copula model of CDS spreads[J]. Journal of Business andEconomic Statistics, 2018, 36(2):181-195. [18] 沈根祥, 邹欣悦.已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1):1-10.Shen Genxiang, Zou Xinyue. GAS-HEAVY model for realized measures of volatility and returns[J]. Chinese Journal of Management Science, 2019, 27(1):1-10. [19] Lambert P, Laurent S. Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations[R]. Working Paper,Université de Liège, 2001. [20] Gao Chunting, Zhou Xiaohua. Forecasting VaR and ES using dynamic conditional score models and skew student distribution [J]. Economic Modelling, 2016, 53:216-223. [21] Bauwens L, Laurent, S. A new class of multivariate skew densities with application to generalized autoregressive conditional heteroscedasticity models[J].Journal of Business and Economic Statistics, 2005,23(3):346-354. [22] Blasques F, Koopman S J, Lucas A. Maximum likelihood estimation for score-driven models[R]. Working Paper, Tinbergen Institute, 2017. |
| [1] | Yinhong Yao, Xiaoxu Wang, Wei Chen, Zhensong Chen. Extreme Risk Spillover among Global Stock Markets Based on Transformer-LSTM Quantile Regression [J]. Chinese Journal of Management Science, 2025, 33(8): 1-13. |
| [2] | Weiping Wu, Yu Lin, Chengneng Jin, Zhenpeng Tang. Constrained Optimal Risk Sensitive Execution Problem with Stochastic Market Depth [J]. Chinese Journal of Management Science, 2025, 33(8): 14-25. |
| [3] | Jun Tian, Zanqiang Dong, Yali Li. Research on Financing Strategy of Advance Payment Supply Chain [J]. Chinese Journal of Management Science, 2025, 33(7): 272-283. |
| [4] | Ke Yang, Xin Liu, Fengping Tian. Cross-Market Contagion of Stock Market's Extreme Risks between China and Other Major Emerging Market Countries [J]. Chinese Journal of Management Science, 2025, 33(7): 44-53. |
| [5] | Zisheng Ouyang, Xuewei Zhou. Systemic Risk Backtesting and Connectedness of Chinese Financial Institutions: Evidence from MES and ΔCoVaR [J]. Chinese Journal of Management Science, 2025, 33(6): 14-26. |
| [6] | Genxiang Shen, Zefeng Zhou. Quasi Score-driven Conditional Heteroskedastic Autoregressive Range Model and It's Empirical Study [J]. Chinese Journal of Management Science, 2025, 33(5): 34-44. |
| [7] | Haoyuan Feng, Jie Wu, Anqi Yu, Kun Guo. Will Leveraged Trading Increase the Liquidity of the Stock Market? Empirical Analysis Based on Individual Stocks of Micro-Level [J]. Chinese Journal of Management Science, 2025, 33(4): 1-11. |
| [8] | Haixiang Yao, Qiuyu Liu, Xiaoguang Yang. Strengthening or Weakening: Systemic Risk Spillovers between Diversified Financial in Dustries and Traditional Financial Industries [J]. Chinese Journal of Management Science, 2025, 33(3): 1-12. |
| [9] | Gangjin Wang, Xinyu Ma, Chi Xie. Measuring Interconnectedness of Global Foreign Exchange Markets Using Tail Risk Spillover Network [J]. Chinese Journal of Management Science, 2025, 33(3): 13-23. |
| [10] | Shuai Xu, Shuai Shao, Xianjie He. How Forward-looking Statements in Earnings Communication Conference Affect Analysts Forecast Accuracy? ——Falsehood or Foretell [J]. Chinese Journal of Management Science, 2025, 33(3): 34-44. |
| [11] | Qingwen Sun, Yu Jin, Limei Zheng, Zihan Sun. Measurement Model and Identification Method of Return on Equity Manipulation: Empirical Research Based on the Data of Chinese A-share Listed Companies [J]. Chinese Journal of Management Science, 2025, 33(2): 1-15. |
| [12] | Yuzhen Hu, Jianxia Liu. Container Liner Disruption Recovery Based on Redundancy Elimination Time-band Network [J]. Chinese Journal of Management Science, 2025, 33(2): 118-130. |
| [13] | Mengdi Ma, Shuo Li, Yutao Wang. A Study on Chinese Analyst Reports Validity: Specific Information and Limited Investor Attention [J]. Chinese Journal of Management Science, 2025, 33(2): 38-49. |
| [14] | Shijia Song, Fei Tian, Handong Li. VaR Prediction Model Based on Time-varying Extremum Method and Its Application [J]. Chinese Journal of Management Science, 2025, 33(2): 61-70. |
| [15] | Xingyi Li, Zhongfei Li, Qiqian Li, Yujun Liu, Wenjin Tang. A Review of Research on Asset Return Prediction Based on Machine Learning [J]. Chinese Journal of Management Science, 2025, 33(1): 311-322. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||