1 |
卜林, 孙丽玲, 李政. 地缘政治风险、经济政策不确定性与股票市场波动[J]. 南开经济研究, 2020(5): 185-205.
|
|
Bu L, Sun L L, Li Z. Geopolitical risk, economic policy uncertainty and stock market volatility[J]. Nankai Economic Studies, 2020(5): 185-205.
|
2 |
许雪晨, 田侃. 一种基于金融文本情感分析的股票指数预测新方法[J]. 数量经济技术经济研究, 2021, 38(12): 124-145.
|
|
Xu X C, Tian K. A novel financial text sentiment analysis-based approach for stock index prediction[J]. The Journal of Quantitative & Technical Economic, 2021, 38(12): 124-145.
|
3 |
Yun K K, Yoon S W, Won D. Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process[J]. Expert Systems with Applications, 2021, DOI: 10.1016/j.eswa.2021.115716 .
doi: 10.1016/j.eswa.2021.115716
|
4 |
Ghysels E, Sinko A, Valkanov R. MIDAS regressions: Further results and new directions[J]. Econometric Reviews, 2007, 26(1): 53-90.
|
5 |
刘汉, 刘金全. 中国宏观经济总量的实时预报与短期预测——基于混频数据预测模型的实证研究[J]. 经济研究, 2011, 46(3): 4-17.
|
|
Liu H, Liu J Q. Nowcasting and short-term forecasting of Chinese macroeconomic aggregates: Based on the empirical study of MIDAS model[J]. Economic Research Journal, 2011, 46(3): 4-17.
|
6 |
郭杨莉, 马锋. 基于马尔科夫和混频数据模型的黄金期货市场波动率预测研究[J].中国管理科学, 2024,32(1): 13-22.
|
|
Guo Y L, Ma F. Forecasting the Chinese gold futures market volatility using markov-switching regime and mixed data sampling model[J]. Chinese Journal of Management Science, 2024, 32(1):13-22.
|
7 |
Foroni C, Guerin P, Marcellino M. Using low frequency information for predicting high frequency variables[J]. International Journal of Forecasting, 2018, 34(4): 774-87.
|
8 |
许启发, 卓杏轩, 蒋翠侠. 反向有约束混频数据模型的市场化利率预测[J]. 管理科学学报, 2019, 22(10): 55-71.
|
|
Xu Q F, Zhuo X X, Jiang C X. Predicting market interest rates via reverse restricted MIDAS model[J]. Journal of Management Science and Engineering, 2019, 22(10): 55-71.
|
9 |
唐振鹏, 吴俊传, 冉梦,等. 考虑投资者情绪的中国股市自激发效应研究[J]. 中国管理科学, 2020, 28(7): 1-12.
|
|
Tang Z P, Wu J C, Ran M, et al. Research on the self-exciting effect of Chinese stock market considering investor sentiment[J]. Chinese Journal of Management Science, 2020, 28(7): 1-12.
|
10 |
Adebiyi A A, Adewumi A O, AYO C K. Stock price prediction using the ARIMA model[C]//UKSim International Conference on Computer Modelling and Simulation, Cambridge, England, March 26-28, 2014.
|
11 |
范丽伟, 董欢欢, 渐令. 基于滚动时间窗的碳市场价格分解集成预测研究[J]. 中国管理科学, 2023, 31(1): 277-286.
|
|
Fan L W, Dong H H, Jian L. A decomposition ensemble model with sliding time window for forecasting carbon market prices[J]. Chinese Journal of Management Science, 2023, 31(1): 277-286.
|
12 |
Patel J, Shah S, Thakkar P, et al. Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques[J]. Expert Systems with Applications, 2015, 42(1): 259-68.
|
13 |
Yan X, Wang W H, Chang M. Research on financial assets transaction prediction model based on LSTM neural network[J]. Neural Computing& Applications, 2021, 33(1): 257-70.
|
14 |
方雪清, 吴春胤, 俞守华,等. 基于EEMD-LSTM的农产品价格短期预测模型研究[J]. 中国管理科学, 2021, 29(11): 68-77.
|
|
Fang X Q, Wu C Y, Yu S H, et al. Research on short-term forecast model of agricultural product price based on EEMD-LSTM[J]. Chinese Journal of Management Science, 2021, 29(11): 68-77.
|
15 |
欧阳红兵, 黄亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35.
|
|
Ouyang H B, Huang K, Yan H J. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35.
|
16 |
Selvin S, Vinayakumar R, Gopalakrishnan E A, et al. Stock price prediction using LSTM, RNN and CNN-sliding window model[C]//International Conference on Advances in Computing, Communications and Informatics, Manipal, India, September 13-16, 2017.
|
17 |
Chen Y J, Hao Y T. A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction[J]. Expert Systems with Applications, 2017, 80: 340-355.
|
18 |
Heaton J B, Polson N G, Witte J H. Deep learning for finance: Deep portfolios[J]. Applied Stochastic Models in Business and Industry, 2017, 33(1): 3-12.
|
19 |
Dacrfma M F, Cremonesi P, Jannach D. Are we really making much progress? A worrying analysis of recent neural recommendation approaches[C]// 13th ACM Conference on Recommender Systems, Copenhagen, Denmark, September 16-20, 2019.
|
20 |
李斌, 林彦, 唐闻轩. ML-TEA:一套基于机器学习和技术分析的量化投资算法[J]. 系统工程理论与实践, 2017, 37(5): 1089-1100.
|
|
Li B, Lin Y, Tang W X. ML-TEA: A set of quantitative investment algorithms based on machine learning and technical analysis[J]. Systems Engineering-Theory & Practice, 2017, 37(5): 1089-1100.
|
21 |
李斌, 邵新月, 李玥阳. 机器学习驱动的基本面量化投资研究[J]. 中国工业经济, 2019(8): 61-79.
|
|
Li B, Shao X Y, Li Y Y. Research on machine learning driven quantamental investing[J]. China Industrial Economics, 2019(8): 1089-1100.
|
22 |
Krauss C, Do X A, Huck N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017, 259(2): 61-79.
|
23 |
焦媛媛, 闫鑫, 杜军,等. 社交网络情境下基于同侪影响的产品线规划研究[J]. 中国管理科学, 2022, 30(12): 108-119.
|
|
Jiao Y Y, Yan X, Du J, et al. Research on product line planning considering peer influence in social network context[J]. Chinese Journal of Management Science, 2022, 30(12): 108-119.
|
24 |
林玲, 陈福集, 谢加良,等. 基于改进灰狼优化支持向量回归的网络舆情预测[J]. 系统工程理论与实践, 2022, 42(2): 487-498.
|
|
Lin L, Chen F J, Xie J L, et al. Prediction of network public opinion based on improved grey wolf optimized support vector machine regression[J].Systems Engineering-Theory & Practice, 2022, 42(2): 487-498.
|