Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (9): 121-134.doi: 10.16381/j.cnki.issn1003-207x.2022.0304
Previous Articles Next Articles
Li Li(), Bingkun Cao, Zhenyi Yang
Received:
2022-02-21
Revised:
2022-08-15
Online:
2025-09-25
Published:
2025-09-29
Contact:
Li Li
E-mail:lily691111@126.com
CLC Number:
Li Li, Bingkun Cao, Zhenyi Yang. Research on the Evaluation of Multi-channel Online Advertising Combination Effects Based on Channel Click Path[J]. Chinese Journal of Management Science, 2025, 33(9): 121-134.
"
变量类型 | 一级变量 | 描述 | 二级变量 | 描述 |
---|---|---|---|---|
解释变量 | CICBrand | 当前用户发起类品牌型渠道点击量 | BrandSEA | 当前品牌付费搜索广告的点击量 |
BrandSEO | 当前品牌自然搜索次数 | |||
Direct | 当前直接访问次数 | |||
CICGeneric | 当前用户发起类通用型渠道点击量 | GenericSEA | 当前通用付费搜索广告的点击量 | |
GenericSEO | 当前通用自然搜索次数 | |||
FIC | 当前企业发起类渠道点击量 | SMS | 当前短信广告的点击量 | |
EMA | 当前电子邮件广告的点击量 | |||
当前微信推送点击量 | ||||
Referer | 当前引荐广告的点击量 | |||
PastCICBrand | 过去用户发起的品牌型搜索类渠道点击量 | PastBrandSEA | 过去品牌付费搜索广告的点击量 | |
PastBrandSEO | 过去品牌自然搜索次数 | |||
PastDirect | 过去直接访问次数 | |||
PastCICGeneric | 过去用户发起的通用型搜索类渠道点击量 | PastGenericSEA | 过去通用付费搜索广告的点击量 | |
PastGenericSEO | 过去通用自然搜索次数 | |||
PastFIC | 过去企业发起类渠道点击量 | PastSMS | 过去短信广告的点击量 | |
PastEMA | 过去电子邮件广告的点击量 | |||
PastWechat | 过去微信推送点击量 | |||
PastReferer | 过去引荐广告的点击量 | |||
当前渠道的过去跨渠道点击量 | PastNoBrandSEA | 品牌付费搜索广告的过去跨渠道点击量 | ||
PastNoBrandSEO | 品牌自然搜索的过去跨渠道点击量 | |||
PastNoDirect | 直接访问的过去跨渠道点击量 | |||
PastNoGenericSEA | 通用付费搜索广告的过去跨渠道点击量 | |||
PastNoGenericSEO | 通用自然搜索过去跨渠道点击量 | |||
PastNoSMS | 短信广告的过去跨渠道点击量 | |||
PastNoEMA | 电子邮件广告的过去跨渠道点击量 | |||
PastNoWechat | 微信推送的过去跨渠道点击量 | |||
PastNoReferer | 引荐广告的过去跨渠道点击量 |
"
分类 | 变量 | 风险率 | 系数 | 95%置信区间 |
---|---|---|---|---|
CIC Brand | BrandSEA | 1.346447 | 0.297469 | [1.318364,1.375127] |
BrandSEO | 1.21968 | 0.1985883 | [1.187041,1.253215] | |
Direct | 1.044702 | 0.0437318 | [1.041057,1.04836] | |
CIC Generic | GenericSEA | 1.229635 | 0.2067177 | [1.183997,1.277033] |
GenericSEO | 1.076133 | 0.0733738 | [1.066395,1.085959] | |
FIC | SMS | 0.9003422 | -0.1049804 | [0.8445306,0.9598422] |
EMA | 0.9665695 | -0.0340021 | [0.9075077,1.029475] | |
1.026653 | 0.0263038 | [1.016372,1.037037] | ||
Referer | 1.072776 | 0.07025 | [1.054619,1.091247] | |
CIC Brand (Past) | PastBrandSEA | 1.09085 | 0.0869576 | [1.084562,1.097175] |
PastBrandSEO | 1.031748 | 0.0312549 | [1.010217,1.053739] | |
PastDirect | 1.008229 | 0.0081954 | [1.00734,1.009119] | |
CIC Generic (Past) | PastGenericSEA | 1.019775 | 0.0195815 | [1.005542,1.034209] |
PastGenericSEO | 1.124814 | 0.1176173 | [1.114052,1.135679] | |
FIC (Past) | PastSMS | 1.039186 | 0.0384373 | [1.020704,1.058002] |
PastEMA | 1.09627 | 0.0919131 | [1.07569,1.117243] | |
PastWechat | 1.012529 | 0.0124508 | [1.009428,1.015639] | |
PastReferer | 1.089078 | 0.0853313 | [1.073539,1.104841] | |
控制变量 | Tvc(PastPurchase) | 1.033397 | 0.0328512 | [1.030599,1.036202] |
PastCollect | 1.062955 | 0.0610529 | [1.010622,1.117998] | |
PastShare | 0.7658462 | -0.2667739 | [0.7100619,0.8260131] | |
Age | 1.020624 | 0.0204143 | [1.019302,1.021948] | |
Gender | 0.7420095 | -0.2983932 | [0.7190838,0.7656661] |
"
分类 | 变量 | 风险率 | 系数 | 95%置信区间 |
---|---|---|---|---|
CIC Brand | BrandSEA | 1.495609 | 0.4025332 | [1.459579,1.532528] |
BrandSEO | 1.410488 | 0.3439355 | [1.346172,1.477876] | |
Direct | 1.055243 | 0.0537712 | [1.051508,1.058991] | |
CIC Generic | GenericSEA | 1.323395 | 0.2802002 | [1.266034,1.383354] |
GenericSEO | 1.248082 | 0.2216081 | [1.231896,1.264481] | |
FIC | SMS | 0.9008651 | -0.1043997 | [0.8423919,0.9633971] |
EMA | 0.9737893 | -0.0265604 | [0.906867,1.04565] | |
1.052956 | 0.0516013 | [1.043588,1.062408] | ||
Referer | 1.149355 | 0.139201 | [1.090619,1.211255] | |
CIC Brand (Past) | PastBrandSEA | 1.125024 | 0.1178047 | [1.114671,1.135474] |
PastBrandSEO | 1.120869 | 0.114104 | [1.09891,1.143266] | |
PastDirect | 1.031976 | 0.0314749 | [1.029824,1.034131] | |
CIC Generic (Past) | PastGenericSEA | 1.020664 | 0.0204532 | [1.006186,1.03535] |
PastGenericSEO | 1.134267 | 0.1259864 | [1.122828,1.145822] | |
FIC (Past) | PastSMS | 1.00994 | 0.0098909 | [0.9761242,1.044927] |
PastEMA | 1.08972 | 0.0859211 | [1.063675,1.116403] | |
PastWechat | 1.016902 | 0.0167605 | [1.011276,1.022559] | |
PastReferer | 1.080558 | 0.0774777 | [1.063972,1.097403] | |
控制变量 | Tvc(PastPurchase) | 1.032877 | 0.0323483 | [1.030085,1.035676] |
PastCollect | 1.034653 | 0.0340663 | [0.9833217,1.088664] | |
PastShare | 0.7951518 | -0.2292222 | [0.737499,0.8573116] | |
Age | 1.019605 | 0.0194149 | [1.018276,1.020935] | |
Gender | 0.7386099 | -0.3029854 | [0.7157744,0.7621739] | |
交互项(同渠道组合) | BrandSEA×PastBrandSEA | 0.976354 | -0.02393 | [0.9701595,0.9825881] |
BrandSEO×PastBrandSEO | 0.9854322 | -0.0146749 | [0.976238,0.9947131] | |
Direct×PastDirect | 0.9989715 | -0.001029 | [0.9988066,0.9991364] | |
GenericSEA×PastGenericSEA | 1.000192 | 0.0001916 | [0.9916995,1.008757] | |
GenericSEO×PastGenericSEO | 0.9911484 | -0.008891 | [0.9870659,0.9952479] | |
SMS×PastSMS | 1.01099 | 0.0109301 | [0.9918164,1.030534] | |
EMA×PastEMA | 0.9865158 | -0.0135759 | [0.9728393,1.000385] | |
Wechat×PastWechat | 1.001467 | 0.0014656 | [1.000889,1.002045] | |
Refer×PastRefer | 1.017111 | 0.0169667 | [1.008446,1.025852] | |
交互项(跨渠道组合) | BrandSEA×PastNoBrandSEA | 0.9868122 | -0.0132755 | [0.9824447,0.9911992] |
BrandSEO×PastNoBrandSEO | 0.9781465 | -0.0220958 | [0.9704117,0.9859429] | |
Direct×PastNoDirect | 0.9995069 | -0.0004932 | [0.9985183,1.000497] | |
GenericSEA×PastNoGenericsea | 0.975973 | -0.0243204 | [0.9654965,0.9865632] | |
GenericSEO×PastNoGenericseo | 0.9930447 | -0.0069796 | [0.9922149,0.9938753] | |
SMS×PastNoSMS | 1.011966 | 0.011895 | [1.005377,1.018598] | |
EMA×PastNoEMA | 1.032431 | 0.0319161 | [1.017919,1.047149] | |
Wechat×PastNoWechat | 0.9908988 | -0.0091428 | [0.9884687,0.993335] | |
Refer×PastNoRefer | 0.9902901 | -0.0097573 | [0.9835826,0.9970435] |
"
分类 | 变量 | 风险率 | 系数 | 95%置信区间 |
---|---|---|---|---|
CIC Brand | BrandSEA | 1.376832 | 0.3197853 | [1.319545,1.436606] |
BrandSEO | 1.234039 | 0.2102924 | [1.173642,1.297543] | |
Direct | 1.056626 | 0.055081 | [1.047285,1.066051] | |
CIC Generic | GenericSEA | 1.30149 | 0.2635098 | [1.186306,1.427858] |
GenericSEO | 1.328776 | 0.2842584 | [1.291911,1.366694] | |
FIC | SMS | 0.9464716 | -0.0550143 | [0.8503287,1.053485] |
EMA | 1.007904 | 0.0078733 | [0.9439406,1.076202] | |
1.051919 | 0.0506165 | [1.039848,1.064131] | ||
Referer | 1.139992 | 0.1310214 | [1.101564,1.17976] | |
CIC Brand (Past) | PastBrandSEA | 1.08336 | 0.0800669 | [1.06179,1.105367] |
PastBrandSEO | 1.098837 | 0.0942524 | [1.062654,1.136252] | |
PastDirect | 1.032823 | 0.0322963 | [1.026494,1.039191] | |
CIC Generic (Past) | PastGenericSEA | 1.030065 | 0.0296216 | [0.997417,1.063781] |
PastGenericSEO | 1.153627 | 0.1429112 | [1.130881,1.176831] | |
FIC (Past) | PastSMS | 1.02877 | 0.0283635 | [1.004936,1.053168] |
PastEMA | 1.083799 | 0.0804722 | [1.060861,1.107233] | |
PastWechat | 1.013714 | 0.0136205 | [1.007235,1.020234] | |
PastReferer | 1.08012 | 0.0770725 | [1.047068,1.114216] | |
控制变量 | Tvc(PastPurchase) | 1.033188 | 0.032649 | [1.030245,1.036139] |
PastCollect | 1.049828 | 0.0486267 | [0.9944068,1.108339] | |
PastShare | 0.7780524 | -0.2509614 | [0.7181272,0.8429781] | |
Age | 1.020356 | 0.0201518 | [1.018926,1.021788] | |
Gender | 0.7441685 | -0.2954877 | [0.720327,0.7687992] | |
交互项(基于渠道分类的特定渠道顺序) | CICBrand×PastCICBrand | 0.9988621 | -0.0011385 | [0.9985018,0.9992226] |
CICBrand×PastCICGeneric | 0.989975 | -0.0100756 | [0.9830055,0.996994] | |
CICBrand×PastFIC | 1.000373 | 0.000373 | [0.9995354,1.001211] | |
CICGeneric×PastCICBrand | 0.9913733 | -0.0086641 | [0.9901382,0.99261] | |
CICGeneric×PastCICGeneric | 0.9873087 | -0.0127725 | [0.9825931,0.992047] | |
CICGeneric×PastFIC | 0.9755327 | -0.0247716 | [0.9446239,1.007453] | |
FIC×PastCICBrand | 0.9917452 | -0.008289 | [0.9876548,0.9958526] | |
FIC×PastCICGeneric | 0.9940015 | -0.0060166 | [0.9660304,1.022782] | |
FIC×PastFIC | 1.001384 | 0.0013835 | [1.000503,1.002266] |
"
分类 | 变量 | 系数 | |
---|---|---|---|
男 | 女 | ||
CIC Brand | BrandSEA | 0.3486749 | 0.3029304 |
BrandSEO | 0.1993119 | 0.2007566 | |
Direct | 0.0600732 | 0.0525167 | |
CIC Generic | GenericSEA | 0.2297741 | 0.3453779 |
GenericSEO | 0.2755656 | 0.3027294 | |
FIC | SMS | 0.0100421 | -0.1753532 |
EMA | -0.009854 | 0.0118566 | |
0.0571562 | 0.0417457 | ||
Referer | 0.1341778 | 0.1381804 | |
CIC Brand (Past) | PastBrandSEA | 0.121433 | 0.0716659 |
PastBrandSEO | 0.1194788 | 0.0896197 | |
PastDirect | 0.0301799 | 0.03712 | |
CIC Generic (Past) | PastGenericSEA | 0.0080339 | 0.0339193 |
PastGenericSEO | 0.1500571 | 0.1384109 | |
FIC (Past) | PastSMS | 0.1092676 | 0.0063826 |
PastEMA | 0.0812032 | 0.0810788 | |
PastWechat | 0.0271742 | 0.000853 | |
PastReferer | 0.096782 | 0.0677919 | |
控制变量 | Tvc(PastPurchase) | 0.0316208 | 0.0329459 |
PastCollect | 0.1184742 | -0.0176073 | |
PastShare | -0.193947 | -0.2853876 | |
Age | 0.022278 | 0.0178563 | |
交互项(基于渠道分类的特定渠道顺序) | CICBrand×PastCICBrand | -0.0010853 | -0.001394 |
CICBrand×PastCICGeneric | -0.0138712 | -0.0072687 | |
CICBrand×PastFIC | -0.0015139 | 0.0013761 | |
CICGeneric×PastCICBrand | -0.0061048 | -0.0088922 | |
CICGeneric×PastCICGeneric | -0.010905 | -0.0154069 | |
CICGeneric×PastFIC | -0.0589481 | 0.0367443 | |
FIC×PastCICBrand | -0.0083223 | -0.0094824 | |
FIC×PastCICGeneric | -0.0011416 | -0.0024805 | |
FIC×PastFIC | 0.0008727 | 0.0038986 |
[1] | Lim J S, Ri S Y, Egan B D, et al. The cross-platform synergies of digital video advertising: Implications for cross-media campaigns in television, Internet and mobile TV[J]. Computers in Human Behavior, 2015, 48: 463-472. |
[2] | Li H A, Kannan P K. Attributing conversions in a multichannel online marketing environment: An empirical model and a field experiment[J]. Journal of Marketing Research, 2014, 51(1): 40-56. |
[3] | Assael H. From silos to synergy[J]. Journal of Advertising Research, 2011, 51 (1): 42-58. |
[4] | Naik P A, Peters K. True synergy for real effects: How to control integrated marketing successfully[J]. GfK Marketing Intelligence Review, 2015, 7(1): 34-41. |
[5] | Danaher P J, Dagger T S. Comparing the relative effectiveness of advertising channels: A case study of a multimedia blitz campaign[J].Journal of Marketing Research, 2013, 50(4): 517-534. |
[6] | Chatterjee P, Hoffman D L, Novak T P. Modeling the clickstream: Implications for web-based advertising efforts[J]. Marketing Science, 2003, 22(4): 520-541. |
[7] | Joo M, Wilbur K C, Cowgill B, et al. Television advertising and online search[J]. Management Science, 2013, 60(1): 56-73. |
[8] | Nottorf F. Modeling the clickstream across multiple online advertising channels using a binary logit with Bayesian mixture of normals[J]. Electronic Commerce Research and Applications, 2014, 13(1): 45-55. |
[9] | Xu L, Duan J A, Whinston A. Path to purchase: A mutually exciting point process model for online advertising and conversion[J]. Management Science, 2014, 60(6): 1392-1412. |
[10] | Bollinger B K, Cohen M A, Lai J. Measuring asymmetric persistence and interaction effects of media exposures across platforms[J]. SSRN Electronic Journal, 2013:2342349. |
[11] | Stolyarova E, Rialp J. Synergies among advertising channels: An efficiency analysis[J]. Journal of Promotion Management, 2014, 20(2): 200-218. |
[12] | Micu A C. Testing for a synergistic effect between online publicity and advertising in an integrated marketing communications context [D]. Columbia: University of Missouri - Columbia, 2005. |
[13] | Micu A C, Thorson E. Leveraging news and advertising to introduce new brands on the web[J]. Journal of Interactive Advertising, 2008, 9(1): 14-26. |
[14] | Loda M D, Coleman B C. Sequence matters: A more effective way to use advertising and publicity[J]. Journal of Advertising Research, 2005, 45(4): 362-372. |
[15] | Micu A C, Pentina I. Examining search as opposed to experience goods when investigating synergies of Internet news articles and banner ads[J]. Internet Research, 2015, 25(3): 378-398. |
[16] | Danaher P J, Dagger T S. Comparing the relative effectiveness of advertising channels: A case study of a multimedia blitz campaign[J]. Journal of Marketing Research, 2013, 50(4): 517-534. |
[17] | Klapdor S, Anderl E, Schumann J H, et al. How to use multichannel behavior to predict online conversions[J]. Journal of Advertising Research, 2015, 55(4): 433-442. |
[18] | 禹杭, 陈香兰. 含蓄还是直白? ——隐喻广告效果研究回顾与展望[J]. 外国经济与管理, 2018, 40(10): 54-65. |
Yu H, Chen X L. Implicit or explicit: Literature review and prospects of research on the effects of advertising metaphors[J]. Foreign Economics & Management, 2018, 40(10): 54-65. | |
[19] | Wu G, Sandeep B. The synergy effect of print and web advertising: A field experiment[C]//Proceedings of the 2007 Conference of American Academy of Advertising Conference, Burlington, VT,USA,April 12-15, 2007: 208-213. |
[20] | Micu A C. Testing for a synergistic effect between online publicity and advertising in an integrated marketing communicationscontext[D]. Columbia: University of Missouri, 2005. |
[21] | Voorveld H A M, Valkenburg S M F. The fit factor: The role of fit between ads in understanding cross-media synergy[J]. Journal of Advertising, 2015, 44(3): 185-195. |
[22] | Shankar V, Malthouse E C. The growth of interactions and dialogs in interactive marketing[J]. Journal of Interactive Marketing, 2007, 21(2): 2-4. |
[23] | Wiesel T, Pauwels K, Arts J. Practice prize paper—Marketing’s profit impact: Quantifying online and off-line funnel progression[J]. Marketing Science, 2011, 30(4): 604-611. |
[24] | Calder B J, Malthouse E C, Schaedel U. An experimental study of the relationship between online engagement and advertising effectiveness[J]. Journal of Interactive Marketing, 2009, 23(4): 321-331. |
[25] | Van den Poel D, Buckinx W. Predicting online-purchasing behaviour[J]. European Journal of Operational Research, 2005, 166(2): 557-575. |
[26] | Snyder J, Garcia-Garcia M. Advertising across platforms: Conditions for multimedia campaigns[J]. Journal of Advertising Research, 2016, 56(4): 352-367. |
[27] | Sridhar S, Germann F, Kang C, et al. Relating online, regional, and national advertising to firm value[J]. Journal of Marketing, 2016, 80(4): 39-55. |
[28] | 王平, 孙皖玲, 范秀成, 等.广告协同效应研究述评及展望[J].外国经济与管理,2016,38(11):14-28+128. |
Wang P, Sun W L, Fan X C, et al. A literature review of advertising synergy effect and prospects[J]. Foreign Economics & Management, 2016, 38(11): 14-28+128. | |
[29] | Abou Nabout N, Lilienthal M, Skiera B. Empirical generalizations in search engine advertising[J]. Journal of Retailing, 2014, 90(2): 206-216. |
[30] | Ghose A, Yang S. An empirical analysis of search engine advertising: Sponsored search in electronic markets[J]. Management Science, 2009, 55(10): 1605-1622. |
[31] | Dou W, Lim K H, Su C, et al. Brand positioning strategy using search engine marketing[J]. MIS Quarterly, 2010, 34(2): 261-279. |
[32] | Lee W M, Sanderson M. Analyzing URL queries[J]. Journal of the American Society for Information Science and Technology, 2010, 61(11): 2300-2310. |
[33] | Libai B, Biyalogorsky E, Gerstner E. Setting referral fees in affiliate marketing[J]. Journal of Service Research, 2003, 5(4): 303-315. |
[34] | Van den Bulte C, Iyengar R. Tricked by truncation: Spurious duration dependence and social contagion in hazard models[J]. Marketing Science, 2010, 30(2): 233-248. |
[35] | Hauser J R, Wernerfelt B. An evaluation cost model of consideration sets[J]. Journal of Consumer Research, 1990, 16(4): 393-408. |
[36] | Moe W W, Fader P S. Dynamic conversion behavior at E-commerce sites[J]. Management Science, 2004, 50(3): 326-335. |
[37] | Yadav M S, Pavlou P A. Marketing in computer-mediated environments: Research synthesis and new directions[J]. Journal of Marketing, 2014, 78(1): 20-40. |
[38] | Rutz O J, Bucklin R E. From generic to branded: A model of spillover in paid search advertising[J]. Journal of Marketing Research, 2011, 48(1): 87-102. |
[39] | Baecke P, Van Den Poel D. Improving purchasing behavior predictions by data augmentation with situational variables[J]. International Journal of Information Technology & Decision Making, 2010, 9(6): 853-872. |
[40] | Johnson E J, Moe W W, Fader P S, et al. On the depth and dynamics of online search behavior[J]. Management Science, 2004, 50(3): 299-308. |
[41] | Murray K B, Häubl G. Explaining cognitive lock-In: The role of skill-based habits of use in consumer choice[J]. Journal of Consumer Research, 2007, 34(1): 77-88. |
[42] | Burnham T A, Frels J K, Mahajan V. Consumer switching costs: A typology, antecedents, and consequences[J]. Journal of the Academy of Marketing Science, 2003, 31(2): 109-126.. |
[43] | Lambrecht A, Tucker C. When does retargeting work? information specificity in online advertising[J]. Journal of Marketing Research,2013,50(5): 561-576. |
[44] | Hausman J A, Woutersen T. Estimating a semi-parametric duration model without specifying heterogeneity[J].Journal of Econometrics,2014,178: 114-131. |
[45] | Lambrecht A, Tucker C. When does retargeting work? Information specificity in online advertising[J]. Journal of Marketing Research,2013,50(5): 561-576. |
[1] | Tianfang Zan, Jinpeng Xu, Yi Li, Xiaolan You, Gengzhong Feng. The Competitive Price-matching Policy of an Inferior Retailer in Asymmetric Competition [J]. Chinese Journal of Management Science, 2025, 33(9): 258-268. |
[2] | Zonghuo Li, Shanliang Li, Liwen Liu. Platform Pricing Strategies and Mode Selection of Retailers Facing Potential Competitors’ Heterogeneous Product Introduction [J]. Chinese Journal of Management Science, 2025, 33(9): 269-279. |
[3] | Bo Wu, Jianheng Zhou. Incentives for Carbon Emission Reduction in the Supply Chain under the Demand and the Trading Price of the Emission Permit Uncertainty [J]. Chinese Journal of Management Science, 2025, 33(9): 349-358. |
[4] | Zhibing Lin, Yuwen Li, Mofan Chen. Research on Manufacturer Production Strategies Considering Credit Discount [J]. Chinese Journal of Management Science, 2025, 33(9): 67-76. |
[5] | Ping Xie, Di Xu. Adoption Decision on Ship-from-store Strategy for Dual-channel Retailers in the Context of Public Health Emergencies [J]. Chinese Journal of Management Science, 2025, 33(9): 77-88. |
[6] | Benrong Zheng. Patent Licensing Contract Design under Asymmetric Information: An Investment Spillover Perspective [J]. Chinese Journal of Management Science, 2025, 33(6): 49-62. |
[7] | Yao Luo, Jianheng Zhou. Contract Selection with the Level of Separation in Dual-channel Supply Chain under Asymmetric Information [J]. Chinese Journal of Management Science, 2025, 33(6): 255-264. |
[8] | Youguo Jing, Shunchao Pang, Yan Zhang, Kaida Qin. Counterfeit Invasion and Brand Owner's Channel Strategies under Heterogeneous E-commerce Platforms [J]. Chinese Journal of Management Science, 2025, 33(6): 300-311. |
[9] | Tao Liu, Juliang Zhang, Yunhui Liu. Designing a Collusion-proof Reverse Auction Procurement Mechanism [J]. Chinese Journal of Management Science, 2025, 33(5): 65-75. |
[10] | Zhangwei Feng, Bisheng Du, Zhiyong Yu, Shandong Mou. Recycling and Traceability Technology Introducing Strategy of New Energy Vehicles’ Power Battery Driven by Blockchain [J]. Chinese Journal of Management Science, 2025, 33(4): 313-324. |
[11] | Yong Qi, Zemin Hou, Jinxia Cao. The Data Usage Strategy Choice of Firms under the Differentiated Privacy Protection Policy [J]. Chinese Journal of Management Science, 2025, 33(3): 151-161. |
[12] | Jinlong Zhao, Zhongzhong Jiang, Mingzhong Wan, Chunzheng Zhang. Order Picking Optimization in "Parts-to-Picker" Systems Considering Delivery Due Dates [J]. Chinese Journal of Management Science, 2025, 33(3): 239-255. |
[13] | Xiaolong Guo, Tingting Tang, Zenghui Su. Pricing Strategies Considering Logistics Service Efforts on the Online Freight Platform [J]. Chinese Journal of Management Science, 2025, 33(3): 277-286. |
[14] | Wei Qi, Ziwei Li, Xinggang Luo. Product Line Pricing Strategy Considering Experience Service and Customer Behavior [J]. Chinese Journal of Management Science, 2025, 33(2): 207-220. |
[15] | Daoping Wang, Yu Zhou, Hanxi Dong. Research on Product Improvement and Pricing Strategy of Competitive Manufacturers Considering Online Reviews and New Customer Coupons [J]. Chinese Journal of Management Science, 2025, 33(2): 248-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|