Chinese Journal of Management Science ›› 2020, Vol. 28 ›› Issue (9): 33-44.doi: 10.16381/j.cnki.issn1003-207x.2020.09.004
• Articles • Previous Articles Next Articles
WANG Xian-dong1,2, HE Jian-min3
Received:
2018-06-11
Revised:
2018-09-30
Online:
2020-09-20
Published:
2020-09-25
CLC Number:
WANG Xian-dong, HE Jian-min. Pricing Asian Options under Uncertain Environment with Fuzziness and Randomness Considering Decision Maker's Subjective Judgment[J]. Chinese Journal of Management Science, 2020, 28(9): 33-44.
[1] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [2] Yoshida Y. The valuation of European options in uncertain environment[J]. European Journal of Operational Research, 2003, 145(1):221-229. [3] Yoshida Y, Yasuda M, Nakagami J, et al. A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty[J]. Fuzzy Sets and Systems, 2006, 157(19):2614-2626. [4] Wu Hsienchung. Pricing European options based on the fuzzy pattern of Black-Scholes formula[J]. Computers & Operations Research, 2004, 31(7):1069-1081. [5] Wu Hsienchung. Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options[J]. Applied Mathematics and Computation, 2007, 185(1):136-146. [6] Nowak P, Romaniuk M. Computing option price for Levy process with fuzzy parameters[J]. European Journal of Operational Research, 2010, 201(1):206-210. [7] Nowak P, Romaniuk M. Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework[J]. Journal of Computational and Applied Mathematics, 2014, 263(1):129-151. [8] Změskal Z. Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)[J]. European Journal of Operational Research, 2010, 207(2):1096-1103. [9] 秦学志, 吴冲锋. 具有交易费用的或有要求权的模糊估价方法[J]. 模糊系统与数学, 2003, 17(1):73-76. [10] 韩立岩, 周娟. Knight不确定环境下基于模糊测度的期权定价模型[J]. 系统工程理论与实践, 2007, 27(12):123-132. [11] 张卫国, 史庆盛, 肖炜麟. 考虑支付红利的可转债模糊定价模型及其算法[J]. 管理科学学报, 2010, 13(11):86-93. [12] 张茂军, 秦学志, 南江霞. 基于三角直觉模糊数的欧式期权二叉树定价模型[J]. 系统工程理论与实践, 2013, 33(1):34-40. [13] Zhang Lihua, Zhang Weiguo, Xu Weijun, et al. The double exponential jump diffusion model for pricing European options under fuzzy environments[J]. Economic Modelling, 2012, 29(3):780-786. [14] Thavaneswaran A, Appadoo S S, Frank J. Binary option pricing using fuzzy numbers[J]. Applied Mathematics Letters, 2013, 26(1):65-72. [15] 马勇,张卫国,刘勇军,等.模糊随机环境中的欧式障碍期权定价[J].系统工程学报, 2012, 27(5):641-647. [16] Wang Xiandong, He Jianmin, Li Shouwei. Compound option pricing under fuzzy environment[J]. Journal of Applied Mathematics, 2014, 44(3):1-9. [17] 徐维军, 周平平, 彭小龙,等. 基于Lévy过程带模糊参数的脆弱期权定价模型[J]. 系统工程, 2015, 33(1):11-17. [18] Davydov D, Linetsky V. Pricing and hedging path-dependent options under the CEV process[J]. Management Science, 2001, 47(7):949-965. [19] Linetsky V. Spectral expansions for Asian (average price) options[J]. Operations Research, 2004, 52(6):856-867. [20] Cai N, Kou S G. Pricing Asian options under a hyper-exponential jump diffusion model[J]. Operations Research, 2012, 60(1):64-77. [21] Hubalek F, Keller M, Sgarra C. Geometric Asian option pricing in general affine stochastic volatility models with jumps[J]. Quantitative Finance, 2017, 17(6):873-888. [22] Cui Zhenyu, Lee Chihoon, Liu Yanchu. Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes[J]. European Journal of Operational Research, 2018, 266(2):1134-1139. [23] 詹惠蓉, 彭龙. 基于加权可能性均值的亚式期权模糊定价[J]. 数学的实践与认识, 2011, 41(3):78-85. [24] Zhang Weiguo, Xiao Weilin, Kong Wentao, et al. Fuzzy pricing of geometric Asian options and its algorithm[J]. Applied Soft Computing, 2015, 28(3):360-367. [25] Liu Yuhong, Jiang Iming. Influence of investor subjective judgments in investment decision-making[J]. International Review of Economics and Finance, 2012, 24(10):129-142. [26] 徐元栋. BSV、DHS等模型中资产定价与模糊不确定性下资产定价在逻辑结构上的一致性[J]. 中国管理科学, 2017, 25(6):22-31. [27] Kwakernaak H. Fuzzy random variables-I. Definitions and theorem[J]. Information Sciences, 1978, 15(1):1-29. [28] Fullér R, Majlender P. On weighted possibilistic mean and variance of fuzzy numbers[J]. Fuzzy Sets and Systems, 2003, 136(3):363-374. [29] Yager R R. A procedure for ordering fuzzy subsets of the unit interval[J]. Information Sciences, 1981, 24(2):143-161. [30] Wang X, Kerre E E. Reasonable properties for the ordering of fuzzy quantities (I)[J]. Fuzzy Sets and Systems, 2001, 118(3):375-385. [31] Yoshida Y. An optimal stopping problem in dynamic fuzzy systems with fuzzy rewards[J]. Computers & Mathematics with Applications, 1996, 32(10):17-28. |
[1] | CHEN Qi-an, ZHANG Hui. Systemic Risk Shock, Enterprise Innovation Ability and Stock Price Volatility: Theoretical and Empirical Research [J]. Chinese Journal of Management Science, 2021, 29(3): 1-13. |
[2] | SHI Yuan, WANG Xin-hua, GAO Hong-wei. Pricing Strategy and Optimal Shareholding of Bertrand Duopoly Firms with Cross-shareholding [J]. Chinese Journal of Management Science, 2021, 29(2): 42-50. |
[3] | XU Xian-hao, WANG Qian, ZENG Kuan, PENG Hong-xia. Study on the Optimal Ordering Policy of Perishable Products with Delayed Payment [J]. Chinese Journal of Management Science, 2021, 29(2): 108-116. |
[4] | HE Chao-lin, TU Bei, WANG Peng. The Effectiveness of Dynamic Mean-variance Portfolio: An Aspect of Time-varying Risk Tolerance [J]. Chinese Journal of Management Science, 2021, 29(1): 1-11. |
[5] | JIN Xiu, CHEN Na, WANG Jia. Empirical Study on Cross-industry Asset Allocation Model under the Perspective of Flight-to-quality [J]. Chinese Journal of Management Science, 2020, 28(11): 12-22. |
[6] | WANG Sheng-quan, CHEN Lang-nan, LIU Ren-hao. Asset Bubbles, Technological Innovation and Economic Growth [J]. Chinese Journal of Management Science, 2020, 28(10): 1-12. |
[7] | WANG Jia, JIN Xiu, WANG Xu, LI Gang. Research on Variance Minimization Hedging Based on Time-Varying Markov DCC-GARCH Model [J]. Chinese Journal of Management Science, 2020, 28(10): 13-23. |
[8] | ZHU Peng-fei, TANG Yong, ZHONG Li. Portfolio Strategy Based on Wavelet-High Order Moments model-Take the International Crude Oil Markets as An Research Objects [J]. Chinese Journal of Management Science, 2020, 28(10): 24-35. |
[9] | LIU Feng-gen, WU Jun-chuan, YANG Xi-te, OUYANG Zi-sheng. Long-run Dynamic Effect of Macro-economy on Stock Market Volatility Based on Mixed Frequency Data Model [J]. Chinese Journal of Management Science, 2020, 28(10): 65-76. |
[10] | ZHOU Qi, YOU Zuo-wei, LIU Shan-cun, HAN Jing-ti. Study on Insider Manipulation with Belief Heterogeneity [J]. Chinese Journal of Management Science, 2020, 28(10): 77-87. |
[11] | TANG Zhen-peng, WU Jun-chuan, RAN Meng, ZHANG Ting-ting. Research on The Self-exciting Effect of Chinese Stock Market Considering Investor Sentiment [J]. Chinese Journal of Management Science, 2020, 28(7): 1-12. |
[12] | QU Hui, SHEN Wei. The Impact of Investor Attention on Market Volatility Based on the LSTHAR Model [J]. Chinese Journal of Management Science, 2020, 28(7): 23-34. |
[13] | SHEN Gen-xiang, ZOU Xin-yue. Identification and Measurement of Leverage Effects Using Local Correlation and Truncated Distorted Mix Copula Constructing [J]. Chinese Journal of Management Science, 2020, 28(7): 68-76. |
[14] | QU Hui, ZHANG Yi. The Study of High-dimensional Volatility Estimators and Forecasting Models based on Volatility Timing Performance [J]. Chinese Journal of Management Science, 2020, 28(5): 62-70. |
[15] | CHEN Qi-an, ZHANG Hui, CHEN Shu-yu. Does Stock Index Futures Trading Increase the Stock Market Volatility in China?——Theoretical and Empirical Research Based on Investor Structure [J]. Chinese Journal of Management Science, 2020, 28(4): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|