Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (10): 325-334.doi: 10.16381/j.cnki.issn1003-207x.2021.1118
Kun Zhou1,3,Xiaohui Gao2,3(),Lianshui Li3
Received:
2021-06-04
Revised:
2021-09-07
Online:
2024-10-25
Published:
2024-11-09
Contact:
Xiaohui Gao
E-mail:xhgnuist@163.com
CLC Number:
Kun Zhou,Xiaohui Gao,Lianshui Li. Integrated Carbon Emission Trading Price Prediction Based on EMD-XGB-ELM and FSGM from the Perspective of Dual Processing[J]. Chinese Journal of Management Science, 2024, 32(10): 325-334.
"
模型 | 参数名称 | 最优参数 | |||||
---|---|---|---|---|---|---|---|
北京碳交所 | 上海碳交所 | 广东碳交所 | 天津碳交所 | 深圳碳交所 | EUA市场 | ||
HW | 数据平滑因子 | 0.42 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 |
趋势平滑因子 | 0.01 | 0.99 | 0.58 | 0.87 | 0.99 | 0.01 | |
季节平滑因子 | 0.01 | 0.01 | 0.17 | 0.01 | 0.12 | 0.08 | |
SVM | 惩罚系数 | 7.62 | 3.09 | 2.09 | 6.01 | 9.54 | 2.81 |
核函数中的g | 0.37 | 0.50 | 0.81 | 0.37 | 0.02 | 0.68 | |
LSTM | 学习率 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
FSGM | 阶数 | 0.80 | 1.00 | 0.47 | 0.55 | 0.14 | 0.27 |
XGB | 学习速率 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
树的最大深度 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 10.00 | |
训练数据采样比 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | |
特征采样比 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.60 |
"
模型 | 市场 | RMSE1 | MAE1 | MAPE1 | RMSE2 | MAE2 | MAPE2 | 市场 | RMSE1 | MAE1 | MAPE1 | RMSE2 | MAE2 | MAPE2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HW | 深圳碳交所 | 5.13 | 4.37 | 11.75 | 5.05 | 3.20 | 11.41 | EUA市场 | 7.93 | 6.33 | 37.01 | 9.40 | 7.73 | 53.82 |
SVM | 4.66 | 3.74 | 10.22 | 4.32 | 3.54 | 12.72 | 2.25 | 1.87 | 9.30 | 0.82 | 0.71 | 5.06 | ||
LSTM | 1.44 | 1.21 | 3.46 | 6.50 | 5.73 | 25.26 | 6.27 | 4.93 | 25.61 | 10.22 | 9.35 | 67.67 | ||
FSGM | 9.23 | 8.00 | 23.20 | 8.12 | 6.99 | 30.61 | 3.90 | 3.31 | 16.12 | 3.20 | 2.61 | 18.09 | ||
RF | 3.87 | 3.09 | 8.34 | 3.46 | 2.14 | 6.46 | 2.08 | 1.65 | 8.51 | 0.56 | 0.44 | 3.11 | ||
E-X-E | 1.16 | 0.88 | 2.60 | 1.68 | 1.60 | 6.13 | 0.75 | 0.54 | 2.56 | 1.81 | 1.48 | 10.85 | ||
组合模型 | 1.13 | 0.66 | 1.75 | 0.91 | 0.75 | 2.77 | 0.77 | 0.56 | 2.90 | 0.53 | 0.46 | 3.26 | ||
HW | 北京碳交所 | 9.94 | 7.70 | 14.66 | 14.99 | 12.99 | 15.29 | 上海碳交所 | 3.92 | 3.00 | 13.86 | 4.35 | 3.39 | 8.40 |
SVM | 4.94 | 3.33 | 6.33 | 6.51 | 4.90 | 5.68 | 3.07 | 2.23 | 9.57 | 2.48 | 2.04 | 5.12 | ||
LSTM | 29.03 | 26.15 | 50.15 | 7.16 | 5.66 | 7.04 | 3.46 | 2.32 | 10.56 | 5.44 | 4.71 | 11.55 | ||
FSGM | 6.23 | 5.28 | 10.13 | 4.52 | 3.53 | 4.21 | 7.92 | 6.40 | 48.75 | 5.30 | 4.98 | 12.24 | ||
RF | 4.49 | 3.16 | 5.75 | 4.08 | 2.92 | 3.54 | 3.69 | 2.62 | 13.28 | 2.03 | 1.62 | 4.04 | ||
E-X-E | 2.50 | 2.18 | 3.91 | 23.90 | 22.54 | 26.37 | 1.97 | 1.51 | 8.57 | 6.77 | 6.35 | 15.62 | ||
组合模型 | 1.93 | 1.29 | 2.44 | 3.67 | 2.54 | 2.98 | 1.75 | 1.13 | 8.30 | 1.14 | 0.96 | 2.38 | ||
HW | 广东碳交所 | 2.24 | 1.74 | 11.21 | 2.39 | 2.08 | 7.58 | 天津碳交所 | 3.43 | 1.98 | 14.54 | 3.59 | 2.19 | 9.86 |
SVM | 2.05 | 1.59 | 8.18 | 2.53 | 2.40 | 8.69 | 2.17 | 1.28 | 9.75 | 1.70 | 1.33 | 6.44 | ||
LSTM | 0.98 | 0.69 | 3.36 | 6.02 | 5.73 | 20.53 | 3.33 | 1.68 | 8.31 | 5.88 | 4.76 | 20.66 | ||
FSGM | 3.43 | 2.75 | 16.94 | 3.05 | 2.59 | 9.37 | 4.63 | 3.81 | 29.85 | 5.82 | 5.65 | 28.51 | ||
RF | 3.58 | 1.92 | 8.01 | 0.98 | 0.69 | 2.52 | 2.45 | 1.47 | 9.76 | 1.34 | 1.02 | 4.94 | ||
E-X-E | 2.32 | 1.75 | 8.61 | 5.95 | 5.66 | 20.32 | 0.86 | 0.69 | 4.83 | 3.52 | 3.19 | 15.47 | ||
组合模型 | 2.97 | 1.35 | 4.87 | 0.86 | 0.64 | 2.27 | 1.19 | 0.81 | 5.19 | 1.55 | 1.32 | 6.24 |
1 | 石敏俊,袁永娜,周晟吕,等.碳减排政策:碳税、碳交易还是两者兼之?[J].管理科学学报,2013,16(9):9-19. |
Shi M J, Yuan Y N, Zhou S L, et al. Carbon tax,cap-and-trade or mixed policy: Which is better for carbon mitigation?[J]. Journal of Management Sciences in China, 2013,16(9):9-19. | |
2 | 王明喜,李明,郭冬梅,等.碳排放权的非对称拍卖模型及其配置效率[J].管理科学学报,2019,22(7):34-51. |
Wang M X, Li M, Guo D M, et al. An asymmetric auction model of carbon emission rights and its allocation efficiency[J]. Journal of Management Sciences in China, 2019,22(7):34-51. | |
3 | 高杨,李健.基于EMD-PSO-SVM误差校正模型的国际碳金融市场价格预测[J].中国人口·资源与环境,2014,24(6):163-170. |
Gao Y, Li J. International carbon finance market price prediction based on EMD-PSO-SVM error correction model[J]. China Population,Resources and Environment, 2014,24(6):163-170. | |
4 | 张晨,丁洋,汪文隽.国际碳市场风险价值度量的新方法——基于EVT-CAViaR模型[J].中国管理科学,2015,23(11):12-20. |
Zhang C, Ding Y, Wang W J. An innovation of estimating value at risk of international carbon market: Conditional autoregressive value at risk models with refinements from extreme value theory[J]. Chinese Journal of Management Science, 2015,23(11):12-20. | |
5 | 朱帮助,魏一鸣.基于GMDH-PSO-LSSVM的国际碳市场价格预测[J].系统工程理论与实践,2011,31(12):2264-2271. |
Zhu B Z, Wei Y M. Carbon price prediction based on integration of GMDH, particle swarm optimization and least squares support vector machines[J]. Systems Engineering-Theory & Practice, 2011,31(12):2264-2271. | |
6 | Zhu B Z, Ye S X, Wang P, et al. A novel multiscale nonlinear ensemble leaning paradigm for carbonprice forecasting[J]. Energy Economics, 2018, 70: 143-157. |
7 | Byun S J, Cho H. Forecasting carbon futures volatility using GARCH models with energy volatilities[J]. Energy Economics, 2013, 40: 207-221. |
8 | Koop G, Tole L. Forecasting the European carbon market[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society),2013, 176(3): 723-741. |
9 | María E S, Francesco V, María M B. Understanding volatility dynamics in the EUETSmarket[J]. Energy Policy, 2015, 82: 321-331. |
10 | Sun W, Zhang C C. Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm[J]. Applied Energy, 2018, 231: 1354-1371. |
11 | Atsalakis G S. Using computational intelligence to forecast carbon prices[J]. Applied Soft Computing, 2016, 43: 107-116. |
12 | Fan X H, Li S S, Tian L X. Chaotic characteristic identification for carbon priceand an multi-layer perceptron network prediction model[J]. Expert Systems with Applications,2015, 42: 3945-3952. |
13 | Zhu B Z, Wei Y M. Carbon price forecasting with a novel hybrid ARIMA andleast squares support vector machines methodology[J].Omega,2013,41: 517-524. |
14 | 廖诺,贺勇.基于PSO-GA-ANN的铁矿采选品位与投资策略优化[J].系统管理学报,2018, 27(3):493-499. |
Liao N, He Y. Optimization of iron ore grade selection and inverstment strategies in iron mines based on PSO-GA-ANN[J]. Journal of Systems & Management, 2018, 27(3):493-499. | |
15 | 崔焕影,窦祥胜.基于EMD-GA-BP与EMD-PSO-LSSVM的中国碳市场价格预测[J].运筹与管理,2018,27(7):133-143. |
Cui H Y, Dou X S. Carbon price forecasts in Chinese carbon trading market based on EMD-GA-BP and EMD-PSO-LSSVM[J]. Operations Research and Management Science, 2018,27(7):133-143. | |
16 | Wang S X, Zhang N, Wu L, et al. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable Energy, 2016, 94: 629-636. |
17 | Yang S M, Chen D J, Li S L, et al. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm[J]. Science of the Total Environment, 2020, 716: 137117. |
18 | Zhu B Z, Han D, Wang P, et al. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression[J]. Applied Energy, 2017, 191:521-530. |
19 | Li S, Goel L, Wang P. An ensemble approach for short-term load forecasting byextreme learning machine[J]. Applied Energy, 2016, 170:22-29. |
20 | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and hilbert spectrum for nonlinear and non stationary time series analysis[J]. Proceeding of the Royal Society of London SERIESA, 1998, 454: 903-995. |
21 | Lempel A, Ziv J.On the Complexity of Finite Sequence[J].IEEE Transactions on Information Theory,1976,22(1):75-81. |
22 | Campbell K. Nonlinear time series analysis[J].Technometrics,2001,43(4):491-425. |
23 | 翁克瑞,刘淼,刘钱.TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究[J].系统工程理论与实践,2020,40(3):748-760. |
Weng K R, Liu M, Liu Q. An integrated prediction model of PM2.5 concentration based on TPE-XGBOOST and LassoLars[J]. Systems Engineering-Theory & Practice, 2020,40(3):748-760. | |
24 | 王珏,齐琛,李明芳.基于SSA-ELM的大宗商品价格预测研究[J].系统工程理论与实践,2017,37(8):2004-2014. |
Wang J, Qi C, Li M F. Prediction of commodity prices based on SSA-ELM[J]. Systems Engineering-Theory & Practice, 2017,37(8):2004-2014. | |
25 | Wang Z X, Li Q, Pei L L. A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors[J]. Energy, 2018, 154: 522-534. |
26 | 吴利丰,刘思峰,姚立根.基于分数阶累加的离散灰色模型[J].系统工程理论与实践,2014,34(7):1822-1827. |
Wu L F, Liu S F, Yao L G. Discrete grey model based on fractional order accumulate[J]. Systems Engineering- Theory & Practice, 2014,34(7):1822-1827. | |
27 | Breiman L. Random forests[J]. Machine Learning, 2001, 45 (1): 5-32. |
28 | Du K, Zhao Y, Lei J. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series[J]. Journal of Hydrology, 2017, 552: 44-51. |
[1] | Guangyu Wan,Feiyan Pu,Zichun Li,Yu Cao. Impact of Marketing Capability and Production Operation Capability on Firms' Financial Performance [J]. Chinese Journal of Management Science, 2024, 32(5): 275-285. |
[2] | Zhiqiang Jiang,Yiming Wang,Peng Wang,Weixing Zhou. Do Factors Driving Prosocial Behaviors Promote Fundraising in Medical Crowdfunding? [J]. Chinese Journal of Management Science, 2024, 32(4): 227-236. |
[3] | Kebing Chen,Yuqi Wang. Channel Selection Strategy of the Green-product Manufacturer under Different Forms of Government Subsidies [J]. Chinese Journal of Management Science, 2024, 32(3): 167-177. |
[4] | Niannian Dong,Kui Yin,Wei Gu. The Underlying Mechanisms and Boundary Conditions of the Relationship between Daily Performance Pressure and Innovative Behavior [J]. Chinese Journal of Management Science, 2024, 32(3): 278-286. |
[5] | Jie Chen,Lingbo Xing,Weisheng Li,Zhixiang Chen,Chongping Chen. A risk-Averse Inventory Decision-making Model with Quality Incompleteness [J]. Chinese Journal of Management Science, 2024, 32(2): 54-64. |
[6] | WANG Mei-qiang, CHANG Mei. Evaluating the Operational Performance for Commercial Banks in China Considering the Profit Way [J]. Chinese Journal of Management Science, 2023, 31(7): 140-152. |
[7] | ZHANG Wei-guo, HUANG Si-ying, WANG Chao. Research on Dynamic Forecasting of Rewarding Crowdfunding Financing Performance——Empirical Analyses from “Crowdfunding Network” Data [J]. Chinese Journal of Management Science, 2023, 31(5): 71-83. |
[8] | ZHOU Wei-jie, JIANG Hui-min, CHENG Yu-ke, DANG Yao-guo, DING Song. Forecasting Chinese Hydropower Consumption Forecasting by Using the Repeatability Fractional Grey Time Power Model [J]. Chinese Journal of Management Science, 2023, 31(5): 279-286. |
[9] | Qian-zhi DAI,Xiao-chi XU,Xi-yang LEI,Qian ZHAO. Cost Compensation Method for Incentives Based on Dynamic Non-cooperative Game and Super-efficiency DEA [J]. Chinese Journal of Management Science, 2023, 31(12): 185-192. |
[10] | Teng NIU,Xi ZHAO. Research on Impacts of Performance Compensation Commitments on Timing of Mergers and Acquisitions under Information Asymmetry [J]. Chinese Journal of Management Science, 2023, 31(12): 46-56. |
[11] | Yong-ji ZHANG,Tian-xiong LI,Zhi SU,Qiong HUANG. Fund Size, Investor Attention and Fund Performance Persistence [J]. Chinese Journal of Management Science, 2023, 31(12): 57-68. |
[12] | Xiao-lei WANG,Ren MU,Li ZHOU,Jin-quan DONG. An Evaluation Method of Input-output Performance of Decision Making Units Considering Efficiency and Effect [J]. Chinese Journal of Management Science, 2023, 31(10): 128-135. |
[13] | Yu ZHAO,Bing-bing HUANG,Yuan-hui DENG. Analyzing the Financial Performance of Listed Companies in National Mass Entrepreneurship and Innovation Demonstration Base Based on Propensity Score Matching [J]. Chinese Journal of Management Science, 2023, 31(10): 136-145. |
[14] | DING Long, HU Bin, CHANG Shan. Dynamic Game Analysis of Manufacturer RFID Adoption and Retailer Parallel Importation [J]. Chinese Journal of Management Science, 2022, 30(8): 82-94. |
[15] | WANG Shu-bin, LU Quan-ying, CHAI Jian. Research on the Effects of Technology Multi-index Combination on Unconventional Oil and Gas Production with GMDH-RSM Method [J]. Chinese Journal of Management Science, 2022, 30(6): 275-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|