Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (7): 54-67.doi: 10.16381/j.cnki.issn1003-207x.2022.2287
Previous Articles Next Articles
Kaili Xue1,2, Haibo Kuang1,3(), Bin Meng1,3
Received:
2022-10-25
Revised:
2023-09-07
Online:
2025-07-25
Published:
2025-08-06
Contact:
Haibo Kuang
E-mail:khb@dlmu.edu.cn
CLC Number:
Kaili Xue, Haibo Kuang, Bin Meng. Study on Dynamic Dependence and Risk Contagion Effect of Crude Oil Market and Tanker Market Considering Multi-scale and Multi-state[J]. Chinese Journal of Management Science, 2025, 33(7): 54-67.
"
市场类型 | 市场名称 | 指标 | 数据来源 | 类型 | |
---|---|---|---|---|---|
原油市场 | Brent原油市场 | Brent原油期货 | Wind | 月度 | |
WTI原油市场 | WTI原油期货 | Wind | 月度 | ||
油轮市场 | 油轮整体市场 | 原油油轮市场 | BDTI (波罗的海原油运价指数) | Clarksons | 月度 |
成品油油轮市场 | BCTI (波罗的海成品油运价指数) | Clarksons | 月度 | ||
油轮细分市场 | VLCC型油轮市场 | VLCC Tanker (选取航线TD15: 260000t West Africa - China) | Clarksons | 月度 | |
阿芙拉型油轮市场 | Aframax Tanker (选取航线TD9: 70000mt, Caribbean to US Gulf) | Clarksons | 月度 | ||
巴拿马型油轮市场 | Panamax Tanker (选取航线TC5:55000mt, CPP/UNL naphtha condensate, Middle East/Japan) | Clarksons | 月度 | ||
苏伊士型油轮市场 | Suezmax Tanker (选取航线TD6:135000mt, Black Sea/Mediterranean) | Clarksons | 月度 |
"
统计量 | rBrent | rWTI | rBDTI | rBCTI | rVLCC | rAframax | rPanamax | rSuezmax |
---|---|---|---|---|---|---|---|---|
均值 | 0.3303 | 0.3094 | -0.0226 | 0.2188 | -0.1477 | -0.0327 | 0.2524 | -0.0784 |
中值 | 1.2798 | 1.7945 | -0.5129 | -1.0773 | 0.3306 | -1.5025 | 0.3863 | 1.2144 |
最大值 | 35.6977 | 63.3269 | 56.9910 | 50.1292 | 90.6575 | 70.9432 | 68.5807 | 92.3002 |
最小值 | -63.3933 | -78.1866 | -57.8084 | -70.1012 | -91.4878 | -87.7757 | -113.6044 | -77.0168 |
标准差 | 10.2021 | 11.8259 | 16.4442 | 15.5255 | 20.3595 | 25.5776 | 20.8838 | 24.5681 |
偏度 | -1.4549 | -1.0037 | 0.1349 | 0.0152 | 0.2674 | -0.1471 | -0.4852 | 0.0439 |
峰度 | 11.0151 | 15.3572 | 4.9196 | 5.5277 | 7.6859 | 3.6109 | 7.2853 | 4.7488 |
J-B检验 | 618.0228 | 1332.2060 | 31.9401 | 54.3161 | 189.0685 | 3.9079 | 164.0962 | 26.0603 |
ADF | -11.0802*** | -11.5743*** | -11.3384*** | -11.6977*** | -14.4317*** | -13.3355*** | -12.8128*** | -12.3066*** |
ARCH | 8.0660 | 26.1399 | 5.8752 | 13.1681 | 5.4215 | 12.5833 | 11.4763 | 3.1792 |
[0.0004] | [0.0000] | [0.0162] | [0.0004] | [0.0209] | [0.0005] | [0.0000] | [0.0437] | |
样本量 | 204 | 204 | 204 | 204 | 204 | 204 | 204 | 204 |
"
参数 | rBrent | rWTI | rBDTI | rBCTI | rVLCC | rAframax | rPanamax | rSuezmax |
---|---|---|---|---|---|---|---|---|
a | -0.2359 | -0.3240 | -0.5798 | -0.5680 | -0.6887 | -0.5162 | 0.6657 | 0.6654 |
(0. 3705) | (0.5273) | (0.1824) | (0.1829) | (0.1779) | (0.1897) | (0.0737) | (0.0599) | |
b | 0.4124 | 0.4324 | 0.7557 | 0.7326 | 0.7899 | 0.3899 | -0.9310 | -0.9288 |
(0.3468) | (0.5076) | (0.1336) | (0.1399) | (0.1561) | (0.2392) | (0.0370) | (0.0314) | |
α | 0.6751 | 0.5756 | 0.2462 | 0.3579 | 0.6065 | 0.8157 | 0.6857 | 0.6432 |
(0.1309) | (0.1754) | (0.1634) | (0.1941) | (0.2342) | (0.1710) | (0.1722) | (0.1952) | |
β | 0.1980 | 0.2018 | 0.6028 | 0.4969 | 0.1625 | 0.1092 | 0.2112 | 0.2055 |
(0.1087) | (0.1157) | (0.2031) | (0.2420) | (0.1108) | (0.0920) | (0.1071) | (0.1253) | |
Dof | 5.8101 | 5.3430 | 5.5581 | 4.9535 | 3.6322 | 15.5380 | 5.1129 | 4.7100 |
ARCH | 1.7865 | 1.0988 | 0.5673 | 0.4544 | 0.2249 | 2.3687 | 1.1265 | 0.1958 |
[0.1092] | [0.3679] | [0.6653] | [0.7115] | [0.5083] | [0.0871] | [0.1479] | [0.6096] |
"
时间尺度 | 收益对 | 最优模型 | 时变参数 | 最小值 | 最大值 | 均值 | 标准差 | 时变参数 | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
d1时间尺度(短期) | (uBrent, vAframax) | 时变MRS Clayton | θ0 | 0.0046 | 6.1223 | 1.9650 | 1.1090 | θ1 | 0.0001 | 0.6303 | 0.0796 | 0.1041 |
(uBrent, vPanamax) | 时变MRS Clayton | θ0 | 0.0001 | 36.8231 | 12.3186 | 10.5259 | θ1 | 0.0001 | 1.1028 | 0.1690 | 0.2193 | |
(uBrent, vSuezmax) | 时变MRS Clayton | θ0 | 0.0001 | 10.0100 | 4.5858 | 4.5921 | θ1 | 0.0001 | 0.0296 | 0.0039 | 0.0046 | |
(uBrent, vVLCC) | 时变MRS Clayton | θ0 | 0.0001 | 37.1588 | 12.8850 | 10.6466 | θ1 | 0.0001 | 2.4148 | 1.1209 | 0.5045 | |
d2时间尺度(中期) | (uBrent, vAframax) | 时变MRS SJC Copula | τ0L | 0.0000 | 0.8781 | 0.2572 | 0.2356 | τ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 |
τ0U | 0.0000 | 0.9858 | 0.6024 | 0.3275 | τ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |||
(uBrent, vPanamax) | 时变MRS SJC Copula | τ0L | 0.0000 | 0.9493 | 0.7944 | 0.1079 | τ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
τ0U | 0.0002 | 0.0012 | 0.0010 | 0.0001 | τ1U | 0.0002 | 0.0010 | 0.0010 | 0.0001 | |||
(uBrent, vSuezmax) | 时变MRS Clayton | θ0 | 0.0001 | 55.9061 | 17.2179 | 15.6236 | θ1 | 0.0001 | 1.8828 | 0.1193 | 0.1937 | |
(uBrent, vVLCC) | 时变MRS Clayton | θ0 | 0.0001 | 45.1563 | 12.9884 | 11.2706 | θ1 | 0.0001 | 2.3159 | 0.2912 | 0.3899 | |
d4时间尺度(长期) | (uBrent, vAframax) | 时变MRS SJC Copula | τ0L | 0.0005 | 0.9867 | 0.6066 | 0.3562 | τ1L | 0.0005 | 0.0011 | 0.0010 | 0.0000 |
τ0U | 0.0000 | 0.2897 | 0.1186 | 0.0640 | τ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |||
(uBrent, vPanamax) | 时变MRS Clayton | θ0 | 0.0001 | 49.4121 | 14.2155 | 12.9225 | θ1 | 0.0001 | 4.2503 | 1.5005 | 0.9502 | |
(uBrent, vSuezmax) | 时变MRS SJC Copula | τ0L | 0.0000 | 0.9758 | 0.9090 | 0.0735 | τ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
τ0U | 0.0009 | 0.0010 | 0.0010 | 0.0000 | τ1U | 0.0009 | 0.0010 | 0.0010 | 0.0000 | |||
(uBrent, vVLCC) | 时变MRS SJC Copula | τ0L | 0.0010 | 0.9047 | 0.1204 | 0.2116 | τ1L | 0.0010 | 0.0654 | 0.0013 | 0.0045 | |
τ0U | 0.0032 | 0.3824 | 0.1296 | 0.0967 | τ1U | 0.0010 | 0.0912 | 0.0014 | 0.0063 |
"
时间尺度 | 收益对 | 尾部风险(S0) | 最小值 | 最大值 | 均值 | 标准差 | 尾部风险(S1) | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
d1 时间 尺度 (短期) | (uBTI, vAframax) | λ0L | 0.1474 | 0.5381 | 0.2767 | 0.0842 | λ1L | 0.4801 | 0.9148 | 0.6878 | 0.0737 |
λ0U | 0.0479 | 0.4080 | 0.0603 | 0.0266 | λ1U | 0.4080 | 0.8226 | 0.7124 | 0.0872 | ||
(uBTI,vPanamax) | λ0L | 0.1588 | 0.4048 | 0.1829 | 0.0209 | λ1L | 0.4048 | 0.8643 | 0.8415 | 0.0340 | |
λ0U | 0.0614 | 0.7607 | 0.3006 | 0.1766 | λ1U | 0.3134 | 0.9475 | 0.7595 | 0.1572 | ||
(uBTI,vSuezmax) | λ0L | 0.4355 | 0.7290 | 0.6310 | 0.0421 | λ1L | 0.1646 | 0.5118 | 0.2971 | 0.0383 | |
λ0U | 0.0650 | 0.9313 | 0.6428 | 0.2026 | λ1U | 0.0103 | 0.6882 | 0.2644 | 0.1613 | ||
d2 时间 尺度 (中期) | (uBTI, vAframax) | λ0L | 0.0612 | 0.8925 | 0.5219 | 0.1613 | λ1L | 0.0010 | 0.3657 | 0.0028 | 0.0255 |
λ0U | 0.0800 | 0.9283 | 0.5947 | 0.1572 | λ1U | 0.0049 | 0.4725 | 0.0906 | 0.0631 | ||
(uBTI,vPanamax) | λ0L | 0.2187 | 0.8101 | 0.7138 | 0.0483 | λ1L | 0.0010 | 0.2187 | 0.0021 | 0.0152 | |
λ0U | 0.0257 | 0.8695 | 0.5679 | 0.1731 | λ1U | 0.0010 | 0.0257 | 0.0011 | 0.0017 | ||
(uBTI,vSuezmax) | λ0L | 0.0677 | 0.9567 | 0.7401 | 0.1414 | λ1L | 0.0294 | 0.8354 | 0.3636 | 0.2219 | |
λ0U | 0.5389 | 0.9549 | 0.8411 | 0.0544 | λ1U | 0.1897 | 0.6584 | 0.4050 | 0.0645 | ||
d4 时间 尺度 (长期) | (uBTI, vAframax) | λ0L | 0.3616 | 0.8997 | 0.8823 | 0.0376 | λ1L | 0.1416 | 0.3616 | 0.1728 | 0.0181 |
λ0U | 0.5455 | 0.8834 | 0.8632 | 0.0248 | λ1U | 0.2161 | 0.5455 | 0.2641 | 0.0274 | ||
(uBTI,vPanamax) | λ0L | 0.4798 | 0.6927 | 0.5931 | 0.0366 | λ1L | 0.6927 | 0.9345 | 0.8935 | 0.0226 | |
λ0U | 0.3181 | 0.9064 | 0.8049 | 0.1199 | λ1U | 0.0385 | 0.7510 | 0.1136 | 0.0667 | ||
(uBTI,vSuezmax) | λ0L | 0.6304 | 0.8601 | 0.8306 | 0.0313 | λ1L | 0.0010 | 0.7937 | 0.0050 | 0.0555 | |
λ0U | 0.1206 | 0.8839 | 0.7892 | 0.1146 | λ1U | 0.0010 | 0.7112 | 0.0047 | 0.0497 |
"
时间尺度 | 收益对 | 尾部风险(S0) | 最小值 | 最大值 | 均值 | 标准差 | 尾部风险(S1) | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
d1时间尺度(短期) | (uBrent,vBDTI) | λ0L | 0.0003 | 0.9713 | 0.9363 | 0.0681 | λ1L | 0.0003 | 0.0010 | 0.0010 | 0.0000 |
λ0U | 0.0000 | 0.9462 | 0.8492 | 0.0718 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uWTI, vBDTI) | λ0L | 0.0004 | 0.9703 | 0.9369 | 0.0681 | λ1L | 0.0004 | 0.0010 | 0.0010 | 0.0000 | |
λ0U | 0.0000 | 0.9240 | 0.7946 | 0.0765 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uBrent, vBCTI) | λ0L | 0.0000 | 0.9198 | 0.8231 | 0.0930 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
λ0U | 0.0000 | 0.9644 | 0.9142 | 0.0763 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uWTI, vBCTI) | η0L | 0.0000 | 0.9825 | 0.7749 | 0.3115 | η1L | 0.0000 | 0.6826 | 0.0723 | 0.1341 | |
d2时间尺度(中期) | (uBrent,vBDTI) | λ0L | 0.0000 | 0.0012 | 0.0010 | 0.0001 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 |
λ0U | 0.0000 | 0.8199 | 0.6837 | 0.0896 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uWTI, vBDTI) | λ0L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
λ0U | 0.0000 | 0.7718 | 0.6100 | 0.0967 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uBrent, vBCTI) | η0L | 0.0000 | 0.8685 | 0.7981 | 0.0716 | η1L | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
(uWTI, vBCTI) | η0L | 0.0000 | 0.8314 | 0.7921 | 0.0564 | η1L | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
d4时间尺度(长期) | (uBrent,vBDTI) | λ0L | 0.1263 | 0.6167 | 0.4411 | 0.0908 | λ1L | 0.0056 | 0.1263 | 0.0138 | 0.0090 |
λ0U | 0.1584 | 0.9480 | 0.8680 | 0.0781 | λ1U | 0.0413 | 0.2446 | 0.1224 | 0.0457 | ||
(uWTI, vBDTI) | η0L | 0.0000 | 0.9825 | 0.7749 | 0.3115 | η1L | 0.0000 | 0.6826 | 0.0723 | 0.1341 | |
(uBrent, vBCTI) | η0L | 0.0000 | 0.3480 | 0.0369 | 0.0723 | η1L | 0.0000 | 0.6146 | 0.1171 | 0.1677 | |
(uWTI, vBCTI) | λ0L | 0.0001 | 0.8732 | 0.1863 | 0.2294 | λ1L | 0.0001 | 0.0010 | 0.0010 | 0.0001 | |
λ0U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 |
"
时间尺度 | 收益对 | 尾部风险(S0) | 最小值 | 最大值 | 均值 | 标准差 | 尾部风险(S1) | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|---|---|---|---|---|---|
d1时间尺度(短期) | (uBrent,vAframax) | η0L | 0.0000 | 0.8930 | 0.6300 | 0.1968 | η1L | 0.0000 | 0.3329 | 0.0139 | 0.0438 |
(uBrent,vPanamax) | η0L | 0.0000 | 0.9814 | 0.7837 | 0.3026 | η1L | 0.0000 | 0.5334 | 0.0521 | 0.1136 | |
(uBrent,vSuezmax) | η0L | 0.0000 | 0.9331 | 0.4635 | 0.4646 | η1L | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
(uBrent, vVLCC) | η0L | 0.0000 | 0.9815 | 0.7968 | 0.2789 | η1L | 0.0000 | 0.7505 | 0.4915 | 0.1708 | |
d2时间尺度(中期) | (uBrent,vAframax) | λ0L | 0.0000 | 0.8781 | 0.2572 | 0.2356 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 |
λ0U | 0.0000 | 0.9858 | 0.6024 | 0.3275 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uBrent,vPanamax) | λ0L | 0.0000 | 0.9493 | 0.7944 | 0.1079 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
λ0U | 0.0002 | 0.0012 | 0.0010 | 0.0001 | λ1U | 0.0002 | 0.0010 | 0.0010 | 0.0001 | ||
(uBrent,vSuezmax) | η0L | 0.0000 | 0.9877 | 0.7398 | 0.3546 | η1L | 0.0000 | 0.6920 | 0.0301 | 0.0870 | |
(uBrent, vVLCC) | η0L | 0.0000 | 0.9848 | 0.7836 | 0.3055 | η1L | 0.0000 | 0.7413 | 0.1160 | 0.1844 | |
d4时间尺度(长期) | (uBrent,vAframax) | λ0L | 0.0005 | 0.9867 | 0.6066 | 0.3562 | λ1L | 0.0005 | 0.0011 | 0.0010 | 0.0000 |
λ0U | 0.0000 | 0.2897 | 0.1186 | 0.0640 | λ1U | 0.0000 | 0.0010 | 0.0010 | 0.0001 | ||
(uBrent,vPanamax) | η0L | 0.0000 | 0.9861 | 0.7447 | 0.3255 | η1L | 0.0000 | 0.8495 | 0.5345 | 0.2274 | |
(uBrent,vSuezmax) | λ0L | 0.0000 | 0.9758 | 0.9090 | 0.0735 | λ1L | 0.0000 | 0.0010 | 0.0010 | 0.0001 | |
λ0U | 0.0009 | 0.0010 | 0.0010 | 0.0000 | λ1U | 0.0009 | 0.0010 | 0.0010 | 0.0000 | ||
(uBrent, vVLCC) | λ0L | 0.0010 | 0.9047 | 0.1204 | 0.2116 | λ1L | 0.0010 | 0.0654 | 0.0013 | 0.0045 | |
λ0U | 0.0032 | 0.3824 | 0.1296 | 0.0967 | λ1U | 0.0010 | 0.0912 | 0.0014 | 0.0063 |
[1] | Choi K H, Yoon S M. Asymmetric dependence between oil prices and maritime freight rates: A time-varying Copula approach[J].Sustainability,2020,12(24): 10687. |
[2] | Eslami P, Jung K, Lee D, et al. Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm[J]. Maritime Economics & Logistics, 2017, 19(3): 538-550. |
[3] | Shi W M, Yang Z Z, Li K X. The impact of crude oil price on the tanker market[J]. Maritime Policy & Management, 2013, 40(4): 309-322. |
[4] | Abouarghoub W, Mariscal I B F, Howells P. A two-state Markov-switching distinctive conditional variance application for tanker freight returns[J]. International Journal of Financial Engineering and Risk Management, 2014, 1(3): 239-263. |
[5] | Alizadeh A H, Huang C Y, van Dellen S. A regime switching approach for hedging tanker shipping freight rates[J]. Energy Economics, 2015, 49: 44-59. |
[6] | Yang Y Y, Liu C, Sun X L, et al. Spillover effect of international crude oil market on tanker market[J]. International Journal of Global Energy Issues, 2015, 38(41516): 257-277. |
[7] | Gavriilidis K, Kambouroudis D S, Tsakou K, et al. Volatility forecasting across tanker freight rates: The role of oil price shocks[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 118: 376-391. |
[8] | Gong X, Lin B Q. Time-varying effects of oil supply and demand shocks on China's macro-economy[J]. Energy, 2018, 149: 424-437. |
[9] | Maitra D, Chandra S, Dash S R. Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 138: 101962. |
[10] | Chen F E, Miao Y Q, Tian K, et al. Multifractal cross-correlations between crude oil and tanker freight rate[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 474: 344-354. |
[11] | 冯钰瑶, 刘畅, 孙晓蕾. 不确定性与原油市场的交互影响测度:基于综合集成的多尺度方法论[J]. 管理评论, 2020, 32(7): 29-40. |
Feng Y Y, Liu C, Sun X L. Measuring the interaction between uncertainty and crude oil market: A multiscale methodology based on synthetic integration[J]. Management Review, 2020, 32(7): 29-40. | |
[12] | 杨坤, 于文华, 魏宇. 基于R-vine copula的原油市场极端风险动态测度研究[J]. 中国管理科学, 2017, 25(8): 19-29. |
Yang K, Yu W H, Wei Y. Dynamic measurement of extreme risk among various crude oil markets based on R-vine copula[J]. Chinese Journal of Management Science, 2017, 25(8): 19-29. | |
[13] | 余乐安, 查锐, 贺凯健,等. 国际油价与中美股价的相依关系研究——基于不同行业数据的分析[J]. 中国管理科学, 2018, 26(11): 74-82. |
Yu L A, Zha R, He K J, et al. The analysis of dependence relationship between oil and stock prices: Evidence from China and American industrial sector indices[J]. Chinese Journal of Management Science, 2018, 26(11): 74-82. | |
[14] | Aloui R, Hammoudeh S, Nguyen D K. A time-varying copula approach to oil and stock market dependence: The case of transition economies[J]. Energy Economics, 2013, 39: 208-221. |
[15] | Liu B Y, Ji Q, Fan Y. Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying Mixed-Clayton copula model[J]. Energy Economics, 2017, 68: 53-65. |
[16] | 赵林海, 陈名智. 金融机构系统性风险溢出和系统性风险贡献——基于滚动窗口动态Copula模型双时变相依视角[J]. 中国管理科学, 2021, 29(7): 71-83. |
Zhao L H, Chen M Z. Systemic risk spillovers and systemic risk contributions of financial institutions in China: A perspective of dual time-varying dependence of rolling window dynamic copula model[J]. Chinese Journal of Management Science, 2021, 29(7): 71-83. | |
[17] | 林娟, 吴春晓, 张明. 上海黄金是人民币汇率风险的对冲工具和安全港吗?——基于常量和动态Copula模型[J]. 中国管理科学, 2023, 31(5): 104-115. |
Lin J, Wu C X, Zhang M. Is Shanghai gold a hedge and a safe haven for the RMB?Based on the constant and time-varying copula models[J]. Chinese Journal of Management Science,2023,31(5): 104-115. | |
[18] | Alizadeh A H, Nomikos N K. Cost of carry, causality and arbitrage between oil futures and tanker freight markets[J]. Transportation Research Part E: Logistics and Transportation Review, 2004, 40(4): 297-316. |
[19] | Zhang Y. Investigating dependencies among oil price and tanker market variables by copula-based multivariate models[J]. Energy, 2018, 161: 435-446. |
[20] | Bai X W, Lam J S L. A Copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price[J]. Energy Economics, 2019, 78: 412-427. |
[21] | Sun X L, Liu C, Wang J, et al. Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach[J]. International Review of Financial Analysis, 2020, 68: 101453. |
[22] | Fei F, Fuertes A, Kalotychou E. Dependence in credit default swap and equity markets: Dynamic copula with Markov-switching[J]. International Journal of Forecasting, 2017, 33(3): 662-678. |
[23] | BenSaïda A. The contagion effect in European sovereign debt markets: A regime-switching vine copula approach[J]. International Review of Financial Analysis, 2018, 58: 153-165. |
[24] | Garcia R, Tsafack G. Dependence structure and extreme comovements in international equity and bond markets[J]. Journal of Banking & Finance, 2011, 35(8): 1954-1970. |
[25] | Wang Y C, Wu J L, Lai Y H. A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach[J].Journal of Banking & Finance,2013,37(5): 1706-1719. |
[26] | Ji Q, Bouri E, Roubaud D, et al. Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model[J]. Energy Economics, 2018, 75: 14-27. |
[27] | 王未卿, 刘祥东, 李慧忠. 房地产股票投资能对冲通货膨胀吗?——基于Markov转换GRG copula的相关性测度研究[J]. 中国管理科学,2020,28(12): 23-34. |
Wang W Q, Liu X D, Li H Z. Does real estate stock investment hedge inflation?Research on correlation measurement based on Markov-switching GRG copula[J]. Chinese Journal of Management Science, 2020, 28(12): 23-34. | |
[28] | Ding X X, Dai S Y, Chen F E, et al. Long memory and scaling behavior study of bulk freight rate volatility with structural breaks[J]. Transportation Letters, 2018, 10(6): 343-353. |
[29] | Leonov Y, Nikolov V. A wavelet and neural network model for the prediction of dry bulk shipping indices[J]. Maritime Economics & Logistics,2012,14(3): 319-333. |
[30] | Pal D, Mitra S K. Time-frequency contained co-movement of crude oil and world food prices: A wavelet-based analysis[J]. Energy Economics, 2017, 62: 230-239. |
[31] | He K J, Yu L, Lai K K. Crude oil price analysis and forecasting using wavelet decomposed ensemble model[J]. Energy, 2012, 46(1): 564-574. |
[32] | Nelson D B. Conditional heteroskedasticity in asset returns: A new approach[J]. Econometrica, 1991, 59(2): 347-370. |
[33] | Percival D B, Walden A T. Wavelet methods for time series analysis[M]. Cambridge: Cambridge University Press, 2000. |
[34] | Sklar A. Fonctions de repartition à n dimensions et leurs marges[J]. Publication de l’Institut de Statistique de l’ Université de Paris, 1959(8): 229-231. |
[35] | Joe H. Multivariate models and dependence concepts[M]. London: Chapman & Hall, 1997. |
[1] | Lu Wen, Ling Feng. Interbank Risk Contagion and Effective Bailout Frontier under Dynamic Government Intervention [J]. Chinese Journal of Management Science, 2025, 33(6): 37-48. |
[2] | Yulei Rao, Hongbing Ouyang, Minchun Han, Zihong Wang. Research on the Contagion Mechanism of Bank Liquidity Risk from the Perspective of Macro Liquidity Tightening [J]. Chinese Journal of Management Science, 2025, 33(4): 24-35. |
[3] | Changqing Luo,Lan Liu,Huiming Zhu,Min Zhang. An Empirical Study on the Dynamic Evolution of Crude Oil Market Pricing Power Based on Multi-scale Information Share Model [J]. Chinese Journal of Management Science, 2024, 32(6): 1-12. |
[4] | Han He,Sicheng Li. Research on the Modeling of Default Risk Contagion of Guarantee Circle Based on Directed Complex Network [J]. Chinese Journal of Management Science, 2024, 32(6): 22-33. |
[5] | Xuetong Zhang,Weiguo Zhang,Chao Wang. Tail Risks in Developed and Emerging Markets——Test of Spillover, Contagion and Contagion Determinants [J]. Chinese Journal of Management Science, 2024, 32(4): 14-25. |
[6] | Yinglin Liu, Yan Fang, Jinqiang Yang. Cross-Market Risk Contagion and External Shocks of China's Food Energy [J]. Chinese Journal of Management Science, 2024, 32(11): 103-114. |
[7] | LI Bing-qing, ZHANG Xiao-yuan. Study on the Internal Risk Contagion Mechanism of Enterprise Groups Based on Network Structure [J]. Chinese Journal of Management Science, 2023, 31(5): 20-28. |
[8] | WU Jin-yan, WANG Peng,. Research on Openness and Risk Contagion in Chinese Capital Market Based on Co-higher-moments Test System [J]. Chinese Journal of Management Science, 2023, 31(1): 37-46. |
[9] | WU Jin-yan, WANG Peng. Factors Affecting the Risk Contagion of the Stock Market: An Evidence from Industry-Level Data [J]. Chinese Journal of Management Science, 2022, 30(8): 57-68. |
[10] | WANG Lei, LI Shou-wei, CHEN Ting-qiang, HE Jian-min. Inter-firm Credit Guarantee Network and Risk Contagion Based on Enterprise Behavior Preference [J]. Chinese Journal of Management Science, 2022, 30(2): 80-93. |
[11] | ZHANG Yue-jun, ZHANG Han, WANG Jin-li. Volatility Forecasting of Crude Oil Market Based on Structural Changes and Long Memory [J]. Chinese Journal of Management Science, 2021, 29(9): 54-64. |
[12] | ZHU Xiao-neng, WU Jie-nan. The “Ripple Effect” in Stock Market Co-movement [J]. Chinese Journal of Management Science, 2021, 29(8): 1-12. |
[13] | CHEN Zhan, HUANG Xun, YAN Xiao-feng. Dynamic Portfolio Forecasting of High-dimensions Exchange Rate Assets Under Structure Break [J]. Chinese Journal of Management Science, 2021, 29(11): 13-22. |
[14] | ZHU Peng-fei, TANG Yong, ZHONG Li. Portfolio Strategy Based on Wavelet-High Order Moments model-Take the International Crude Oil Markets as An Research Objects [J]. Chinese Journal of Management Science, 2020, 28(10): 24-35. |
[15] | ZHOU Li-guo, HE Zhuo-jing, MENG Tian-cheng. Credit Risk Contagion in an Enterprise Group with Dynamic Copula Models [J]. Chinese Journal of Management Science, 2019, 27(2): 71-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|