[1] 姚鸿, 王超, 何建敏, 等. 银行投资组合多元化与系统性风险的关系研究[J]. 中国管理科学, 2019, 27(2): 9-18.Yao Hong, Wang Chao, He Jianmin, et al. Study on relationship between investment portfolios diversification and systemic risk[J]. Chinese Journal of Management Science, 2019, 27(2): 9-18. [2] 黄乃静, 汪寿阳. 中欧货币汇率的极端风险传播研究[J]. 管理科学学报, 2018, 21(12): 1-17.Huang Naijing, Wang Shouyang. The extreme risk spillover between European currencies and Chinese renminbi[J]. Journal of Management Science in China, 2018, 21(12): 1-17. [3] Loran C, Andreas H, Alfonso V. Modeling international financial returns with a multivariate regime-switching Copula[J]. Journal of Financial Econometrics, 2009, 7(4): 437-480. [4] 吴鑫育, 李心丹, 马超群. 中国股票市场的波动率聚集性研究——基于Markov机制转换Copula模型的实证研究[J]. 系统管理学报, 2018, 27(4): 644-650.Wu Xinyu, Li Xindan, Ma Chaoqun. Volatility clustering inChinese stock markets: An empirical analysis based on Markov Regime Switching Copula model[J]. Journal of Systems & Management,2018,27(4): 644-650. [5] Zhou Chunyang, Wu Chongfeng, Wang Yudong. Dynamic portfolio allocation with time-varying jump risk[J]. Journal of Empirical finance, 2019, 50(1): 113-124. [6] 韦起, 魏云捷. 基于Markov-vine copula的我国网贷平台对传统金融机构风险传染效应研究[J]. 系统工程理论与实践, 2018, 38(2): 317-328.Wei Qi, Wei Yunjie. An empirical study of contagion effect from the Internet lending platform of China to the traditional financial institutions based on Markov-vine copula[J]. Systems Engineering-Theory & Practice, 2018, 38(2): 317-328. [7] 龚旭, 林伯强. 跳跃风险、结构突变与原油期货价格波动预测[J]. 中国管理科学, 2018, 26(11): 11-21.Gong Xu, Lin Boqiang. Jump risk, structural breaks and forecasting crude oil futures volality[J]. Chinese Journal of Management Science, 2018, 26(11): 11-21. [8] Stober J, Czado C. Regime switches in the dependence structure of multidimensional financial data[J]. Computational Statistics and Data Analysis, 2014, 76(9): 672-685. [9] Gkillas K, Tsagkanos A, Vortelinos D. Integration and risk contagion in financial crises: Evidence from international stock markets[J]. Journal of Business Research, 2019, 104(8): 350-365. [10] 杨子晖, 陈雨恬, 陈里璇. 极端金融风险的有效测度与非线性传染[J]. 经济研究, 2019, (5): 63-80.Yang Zihui, Chen Yutian, Chen Lixuan. Effective measurement and nonlinear contagion of extreme financial risk[J]. Economic Research Journal, 2019, (5):63-80. [11] Mardi D, Renee F, Brenda G H, et al. Empirical modeling of contagion: A review of methodologies[J]. Quantitative Finance, 2005, 5(1): 9-24. [12] Brechmann E C, Czado C, Ass K. Truncated regular vines in high dimensions with application to financial data[J]. The Canadian Journal of Statistics, 2012, 40(1): 68-85. [13] Dimann J, Brechmann E C, Czado C, et al. Selecting and estimating regular vine copula and application to financial returns[J]. Computational Statistics and Data Analysis, 2013, 59(10): 52-69. [14] Acar E, Czado C, Lysy M. Flexible dynamic vine copula models for multivariate time series data[J]. Econometrics and Statistics, 2019, (5): 1-17. [15] 王璇, 采俊玲, 汤铃, 等. 基于BEMD-Copula-GARCH模型的股票投资组合VaR风险度量研究[J]. 系统工程理论与实践, 2017, 37(2): 303-310.Wang Xuan, CaiJunling, Tang Ling, et al. VaR measurement for stock portfolio based on BEMD-Copula-GARCH model[J]. Systems Engineering-Theory &Practic, 2017, 37(2): 303-310. [16] Salvatierra I L, Patton A J. Dynamic copula models and high frequency data[J]. Journal of Empirical Finance, 2015, 30(11): 120-135. [17] 王璐, 黄登仕, 魏宇. 国际多元化下投资组合优化研究: 动态Copula方法[J]. 数量统计与管理, 2016, 35(6): 1109-1124.Wang Lu, Huang Dengshi, Wei Yu. Research on portfolio optimization under international diversification: Dynamic Copula[J]. Journal of Applied Statistics and Management, 2016, 35(6): 1109-1124. [18] Nicole B, Katarína L, Alex W. Optimal granularity for portfolio choice[J]. Journal of Empirical Finance, 2019, 50(1): 125-146. [19] Caraiani P. Evaluating exchange rate forecasts along time and frequency[J]. International Review of Economics and Finance, 2017, 51(5): 60-81. [20] 陈粘, 林宇, 黄登仕, 等. Brent原油期货市场波动结构突变点预测[J]. 系统管理学报, 2019, 28(6): 1095-1105.Chen Zhan, Lin Yu, Huang Dengshi, et al. Forecasting of structure break through points in Brent Crude oil futures market[J]. Journal of Systems & Management, 2019, 28(6): 1095-1105.
|