Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (9): 275-286.doi: 10.16381/j.cnki.issn1003-207x.2020.0899
• Articles • Previous Articles
LI Xia1, LI Shou-wei2
Received:
2020-05-18
Revised:
2020-08-11
Published:
2022-08-31
Contact:
李守伟
E-mail:lishouwei@sdnu.edu.cn
CLC Number:
LI Xia, LI Shou-wei. Non-linear Time Series Prediction Model Based on EMD and DVG and Its Application[J]. Chinese Journal of Management Science, 2022, 30(9): 275-286.
[1] 潘和平,张承钊. FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学, 2018, 26(6): 26-38.Pan Heping, Zhang Chengzhao. FEPA: An adaptive integrated prediction model of financial times series[J].Chinese Journal of Management Science,2018,26(6): 26-38. [2] Box G E, Jenkins G M, Reinsel G C, et al. Time series analysis: forecasting and control[M]. New York: John Wiley & Sons, 2015. [3] 欧阳红兵,黄亢,闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35.Ouyang Hongbing, Huang Kang, Yan Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science,2020,28(4): 27-35. [4] Ghaffari A, Zare S. A novel algorithm for prediction of crude oil price variation based on soft computing[J]. Energy Economics, 2009, 31(4): 531-536. [5] 蔡超敏,凌立文,牛超,等. 国内猪肉市场价格的EMD-SVM集成预测模型[J].中国管理科学,2016,24(S1):845-851.Cai Chaomin,Ling Liwen, Niu Chao,etal. Integration prediction of domestic pork market price based on empirical mode decomposition and support vector machine[J]. Chinese Journal of Management Science,2016,24(S1):845-851. [6] He L T, Hu C, Casey K M. Prediction of variability in mortgage rates: interval computing solutions[J]. The Journal of Risk Finance, 2009, 10(2): 142-154. [7] 龚旭,林伯强. 跳跃风险、结构突变与原油期货价格波动预测[J]. 中国管理科学, 2018, 26(11): 11-21.Gong Xu, Lin Boqiang. Jump risk, structural breaks and forecasting crude oil future volatility[J]. Chinese Journal of Management Science, 2018, 26(11): 11-21. [8] Ye M, Zyren J, Shore J. A monthly crude oil spot price forecasting model using relative inventories[J]. International Journal of Forecasting, 2005, 21(3): 491-501. [9] He Yanan, Wang Shouyang, Lai Kin Keung. Global economic activity and crude oil prices: A cointegration analysis[J]. Energy Economics, 2010, 32(4): 868-876. [10] 刘映琳,刘永辉,鞠卓. 国际原油价格波动对中国商品期货的影响——基于多重相关性结构断点的分析[J]. 中国管理科学, 2019, 27(2): 31-40.Liu Yinglin, Liu Yonghui, Ju Zhuo. The impact of international crude price fluctuation on Chinese commodity futures-based on the correlation structure breakpoint model[J]. Chinese Journal of Management Science, 2019, 27(2): 31-40. [11] 刘金培,林盛,郭涛,等. 一种非线性时间序列预测模型及对原油价格的预测[J]. 管理科学, 2011, 24(6): 104-112.Liu Jinpei, Lin Sheng, Guo Tao, et al. Nonlinear time series forecasting model and its application for oil price forecasting[J]. Journal of Management Science, 2011, 24(6): 104-112. [12] 阮连法,包洪洁. 基于经验模态分解的房价周期波动实证分析[J]. 中国管理科学, 2012, 20(3): 41-46.Ruan Lianfa, Bao Hongjie. An empirical analysis on periodic fluctuation of real estate price based on EMD[J]. Chinese Journal of Management Science, 2012, 20(3): 41-46. [13] Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions[J]. Mechanical systems and signal processing, 2008, 22(6): 1374-1394. [14] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual review of fluid mechanics, 1999, 31(1): 417-457. [15] Cheng Junsheng, Yu Dejie, Yang Yu. Application of support vector regression machines to the processing of end effects of Hilbert--Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1197-1211. [16] 孟宗,闫晓丽,王赛. 基于 HMM 校正与神经网络延拓的 EMD 端点效应抑制方法[J]. 中国机械工程, 2015, 26(14): 1920-1925.Meng Zong, Yan Xiaoli, Wang Qian. Restraining method of end effect for EMD based on error calibration by HMM and neural network[J]. Chinese Journal of Mechanical Engineering, 2015, 26(14): 1920-1925. [17] 苏东林,郑昊鹏.一种解决经验模态分解端点效应的边界延拓法[J]. 航空学报, 2016, 37(3): 960-969.Su Donglin, Zheng Haopeng. A boundary extension method for empirical mode decomposition end effect[J]. Journal of Aeronautics, 2016, 37(3): 960-969. [18] 成小林. 基于经验模态分解的时间序列预测研究[D]. 大连:大连理工大学, 2018.Cheng Xiaolin. Time series prediction based on empirical mode decomposition[D],Dalian:Journal of Dalian University of Technology,2018. [19] 马宇红,强亚蓉,杨梅. 一种基于经验模态分解的时间序列预测方法[J]. 西北师范大学学报(自然科学版), 2020, 56(1): 27-34.Ma Yuhong, Qiang Yarong, Yang Mei. A time series prediction method based on empirical mode decomposition[J]. Journal of Northwest University (Natural Science), 2020, 56(1): 27-34. [20] Yu Lean, Wang Shouyang, Lai Kin Keung. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5): 2623-2635. [21] Dong Yao, Wang Jianzhou, Jiang He, et al. Short-term electricity price forecast based on the improved hybrid model[J]. Energy Conversion and Management, 2011, 52(8-9): 2987-2995. [22] Guo Zhenhai, Zhao Weigang, Lu Haiyan, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2012, 37(1): 241-249. [23] Huang Shengzhi, Chang Jianxia, Huang Qiang, et al. Monthly streamflow prediction using modified EMD-based support vector machine[J]. Journal of Hydrology, 2014, 511: 764-775. [24] 管志威,陈国初,徐余法,等. 基于改进EMD与SVM的风电功率短期预测模型[J]. 控制工程, 2014, 21(6): 833-837.Guan Zhiwei, Chen Guochu, Xu Yufa, et al. The wind power shot-term forecast model based on improved EMD and SVM[J]. Control Engineering of China, 2014, 21(6): 833-837. [25] 王书平,胡爱梅,吴振信. 基于多尺度组合模型的铜价预测研究[J]. 中国管理科学, 2014, 22(8): 21-28.Wang Shuping, Hu Aimei, Wu Zhenxin. Forecasting of copper price based on multi-scale combined model[J]. Chinese Journal of Management Science, 2014, 22(8): 21-28. [26] Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4972-4975. [27] Lacasa L, Luque B, Luque J, et al. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion[J]. Euro physics Letters, 2009, 86(3): 30001. [28] 周婷婷,金宁德,高忠科,等. 基于有限穿越可视图的时间序列网络模型[J]. 物理学报, 2012, 61(3): 86-96.Zhou Tingting, Jin Ningde, Gao Zhongke, et al. Limited penetrable visibility graph for establishing complex network from time series[J]. Acta Physica Sinica,2012, 61(3): 86-96. [29] 汤胤,易娜,毛景慧. 基于有向有限穿越可视图的时间序列伴生网络[J]. 系统工程学报, 2017, 32(2): 156-162.Tang Ying, Yi Na, Mao Jinghui. Derived network based on directed limited penetrable visibility graph for time series[J]. Journal of Systems Engineering, 2017, 32(2): 156-162. [30] 张帆,严广乐. 基于可见图的沪深股市波动分析[J]. 上海理工大学学报, 2014, 36(3): 250-254.Zhang Fan, Yan Guangle. Stock market volatility analysis based on visibility graph algorithm[J]. Journal of the University of Shanghai for Science and Technology, 2014, 36(3): 250-254. [31] 易娜. 基于可视图的时间序列网络模型[D]. 广州:暨南大学, 2014.Yi Na. Time series network model based on Visual images[D]. Guangzhou: Jinan University,2014. [32] Liu Weiping, Lü Linyuan. Link prediction based on local random walk[J]. Euro physics Letters, 2010, 89(5): 58007. [33] Mao Shengzhong, Xiao Fuyuan. A novel method for forecasting Construction Cost Index based on complex network[J]. Physica A: Statistical Mechanics and its Applications, 2019, 527: 121306. [34] 彭丹丹,刘志亮,靳亚强,等. 基于软筛分停止准则的改进经验模态分解及其在旋转机械故障诊断中的应用[J]. 机械工程学报, 2019, 55(10): 122-132.Peng Dandan, Liu Zhiliang, JinYaqiang, et al. Improved EMD with a soft sifting stopping criterion and its application to fault diagnosis of rotating machinery[J]. Journal of Mechanical Engineering, 2019, 55(10): 122-132. [35] 陈继红,曾鑫,真虹,等. 海岬型干散货海运市场周期性特征谱分析模型[J]. 交通运输系统工程与信息, 2016, 16(6): 204-209.Chen Jihong, Zeng Xin, Zhen Hong, et al. Spectral analysis model for cyclical characteristics of capsize dry bulk shipping market[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(06): 204-209. [36] 梁强,范英,魏一鸣. 基于小波分析的石油价格长期趋势预测方法及其实证研究[J]. 中国管理科学, 2005, 13(1): 31-37.Liang Qiang, Fan Ying, Wei Yiming. A long trend forecasting approach for oil price based on wavelet analysis[J]. Journal of Management Science, 2005, 13(1): 31-37. [37] 徐科,徐金梧,班晓娟. 基于小波分解的某些非平稳时间序列预测方法[J]. 电子学报, 2001, 29(4): 566-568.Xu Ke, Xu Jinwu, Ban Xiaojuan. Forecasting of some non-stationary time series based on wavelet decomposition[J]. ACTA Electronic Sinica, 2001, 29(4): 566-568. |
[1] | QU Hui, SHEN Wei. Investor Attention and Covariance Forecasting in China’s Stock Markets——A Study Based on the MHAR Type Models [J]. Chinese Journal of Management Science, 2022, 30(7): 9-19. |
[2] | HUANG Jin-bo, WU Li-li, YOU Yi-ling. Mean-VaR Model Based on the Asymmetric Laplace Distribution [J]. Chinese Journal of Management Science, 2022, 30(5): 31-40. |
[3] | JIANG Chong-hui, LIU Lin. The Effectiveness of Momentum Factor Tracking Strategy: Evidence from China Stock Market [J]. Chinese Journal of Management Science, 2022, 30(5): 86-97. |
[4] | ZHU Li, LIU Xiang-li, YANG Xiao-guang. Does Investor Sentiment Affect the Price Dynamic Relationship of Stock Index Futures-spot Market? [J]. Chinese Journal of Management Science, 2022, 30(4): 52-62. |
[5] | HUANG Jin-bo, CHEN Ling-xi, DING Jie. Corporate Social Responsibility, Mediacoverage and Stock Pricecrash Risk [J]. Chinese Journal of Management Science, 2022, 30(3): 1-12. |
[6] | HU Zhi-jun, LING Ai-fan, YANG Chao. The Ambiguity Premium in China’s A-shares Market——The Analysis from Intra-day High Frequency Data [J]. Chinese Journal of Management Science, 2022, 30(1): 42-53. |
[7] | LU Wan-bo, KANG Jing-hao. GAS-SKST-F Model and Its Application in High Frequency Multivariate Volatility Forecast [J]. Chinese Journal of Management Science, 2022, 30(1): 77-87. |
[8] | XIANG Cheng, YANG Jun. Who Gambles in the Market? A Study on Mutual Funds’ Preferences for Lottery-like Stocks [J]. Chinese Journal of Management Science, 2021, 29(11): 224-236. |
[9] | SHEN Genxiang, ZHANG Jingze. Dynamic Nelson-Siegel Term Structure Model with GARCH Error Terms and It’s Applications [J]. Chinese Journal of Management Science, 2021, 29(10): 1-11. |
[10] | CHEN Wen-bo, CHEN Lang-nan. Reactions of Stock Investors to Earnings Announcements——A Perspective from Gambling Preference [J]. Chinese Journal of Management Science, 2021, 29(9): 1-11. |
[11] | HUANG Yi-rong, BAI Yu-xuan. Is It “Intentional Herding” or “Spurious Herding”? The Influence of Network Contagion Degree on the Pricing Efficiency of Capital Market [J]. Chinese Journal of Management Science, 2021, 29(9): 12-24. |
[12] | WU Xin-yu, LI Xin-dan, MA Chao-qun. Measuring VaR Based on the Information Content of Option and High-frequency Data [J]. Chinese Journal of Management Science, 2021, 29(8): 13-23. |
[13] | JIN Xiu, CHEN Na, WANG Jia. Empirical Study on Cross-industry Asset Allocation Model under the Perspective of Flight-to-quality [J]. Chinese Journal of Management Science, 2020, 28(11): 12-22. |
[14] | WANG Sheng-quan, CHEN Lang-nan, LIU Ren-hao. Asset Bubbles, Technological Innovation and Economic Growth [J]. Chinese Journal of Management Science, 2020, 28(10): 1-12. |
[15] | WANG Jia, JIN Xiu, WANG Xu, LI Gang. Research on Variance Minimization Hedging Based on Time-Varying Markov DCC-GARCH Model [J]. Chinese Journal of Management Science, 2020, 28(10): 13-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|