中国管理科学 ›› 2025, Vol. 33 ›› Issue (7): 210-221.doi: 10.16381/j.cnki.issn1003-207x.2022.1627
• • 上一篇
收稿日期:
2022-07-25
修回日期:
2022-12-07
出版日期:
2025-07-25
发布日期:
2025-08-06
通讯作者:
周国华
E-mail:ghzhou@126.com
基金资助:
Zelong Pan, Guohua Zhou(), Chaoran Huang
Received:
2022-07-25
Revised:
2022-12-07
Online:
2025-07-25
Published:
2025-08-06
Contact:
Guohua Zhou
E-mail:ghzhou@126.com
摘要:
在线状、条状及块状活动共存的线性工程中,针对线状、条状活动多的施工模式,以及线状活动施工方向可选择的复杂施工场景,利用线性计划方法,构建线性工程施工进度计划工期优化模型。同时,提出了一种改进引力搜索算法,该算法通过整数编码和约束规则使其符合离散型问题特点,利用劣质粒子增强局部搜索能力,采用粒子群算法记忆策略提高收敛速度,引入自适应交叉算子优化全局搜索能力,设计灾变算子改善种群多样性。案例仿真结果表明:工期优化模型和改进算法能够高效获得最短工期下复杂线性工程项目的施工进度计划,为管理者提供科学、合理的工期控制决策方法。
中图分类号:
潘泽龙, 周国华, 黄超然. 基于IGSA的线性工程施工进度计划优化模型研究[J]. 中国管理科学, 2025, 33(7): 210-221.
Zelong Pan, Guohua Zhou, Chaoran Huang. Research on Optimization Model of Linear Engineering Construction Schedule Planning Based on IGSA[J]. Chinese Journal of Management Science, 2025, 33(7): 210-221.
表1
最优施工方案"
活动序号 | |||||
---|---|---|---|---|---|
j=1 | j=2 | j=3 | j=4 | ||
1 | 1(32.42,168.56) | — | — | — | 0 |
2 | 1(46.56,210.8) | — | — | — | 0 |
3 | — | 1(10,123.15) | — | — | 1 |
4 | — | 2(23,157.08) | — | — | 1 |
5 | — | 1(29.58,120.63) | — | — | 1 |
6 | — | — | 2(48.34,257.7) | — | 1 |
7 | — | — | 2(51.78,157.03) | — | 1 |
8 | 3(699.33,721.94) | — | — | — | 0 |
9 | 2(627.74,666.42) | — | — | — | 0 |
10 | — | 2(636.99,637.52) | 1(581.88,636.99) | — | 0 |
11 | — | 1(664.75,678.02) | — | — | 1 |
12 | — | — | 3(678.05,703.02) | 3(703.02,707.34) | 1 |
13 | — | — | — | 3(701.7,721.31) | 0 |
14 | 1(544.68,562.68) | — | — | — | 0 |
15 | 1(537.68,544.68) | — | — | — | 0 |
16 | — | 1(442.97,503.64) | — | — | 0 |
17 | — | 1(572.68,583.35) | 1(583.35,613.02) | — | 1 |
18 | 2(751.6,753.85) | 2(749.67,751.6) | 2(748.69,749.67) | 2(747.75,748.69) | 0 |
29 | 1(0,49.14) | 1(49.14,60) | — | — | 1 |
20 | — | 1(0,38.34) | 1(38.34,60) | — | 1 |
21 | — | — | 1(50.96,60) | 1(0,50.96) | 0 |
22 | 1(30.36,157.27) | — | — | — | — |
23 | — | 1(60.54,437.54) | — | — | — |
24 | — | (16.8,428.8) | — | — | — |
25 | — | (27.92,417.92) | — | — | — |
26 | (43.14,383.14) | — | — | — | — |
27 | (29.33,609.33) | — | — | — | — |
28 | (40.66,469.66) | — | — | — | — |
29 | (47.75,248.75) | — | — | — | — |
30 | (52.54,457.54) | — | — | — | — |
31 | (58.74,507.74) | — | — | — | — |
32 | — | — | — | (60.89,360.89) | — |
33 | — | — | — | (54.34,234.34) | — |
34 | — | — | — | (51.7,611.7) | — |
35 | — | (48.34,358.34) | — | — | — |
36 | — | — | (70,527) | — | — |
表2
不同规模算例优化结果"
活动数 | 算法类型 | 最优解 | 最差解 | 标准差 | 运行时间CPU/s |
---|---|---|---|---|---|
20 | IGSA | 122.40 | 122.40 | 0.00 | 137.7 |
Agrama | 125.67 | 128.23 | 0.69 | 116.8 | |
SA | 126.74 | 142.96 | 5.21 | 53.13 | |
GSA | 135.30 | 138.95 | 1.32 | 125.4 | |
IGA | 124.50 | 127.69 | 1.10 | 199 | |
30 | IGSA | 278.00 | 280.25 | 0.64 | 566.2 |
Agrama | 288.68 | 300.05 | 3.46 | 560.2 | |
SA | 290.71 | 320.95 | 7.59 | 281.3 | |
GSA | 322.38 | 380.00 | 15.05 | 596.3 | |
IGA | 283.08 | 290.88 | 2.11 | 913.4 | |
40 | IGSA | 317.15 | 318 | 0.28 | 1356.4 |
Agrama | 321.8 | 327.41 | 1.82 | 1225.5 | |
SA | 318.61 | 324.19 | 1.56 | 671.9 | |
GSA | 355.65 | 376.43 | 6.69 | 1222 | |
IGA | 317.91 | 320.09 | 0.57 | 1961 |
[1] | 卢春房, 卢炜. 综合立体交通运输体系发展策略[J]. 铁道学报, 2022,44(1):1-7. |
Lu C F, Lu W. Development strategies of comprehensive stereoscopic transportation system[J]. Journal of the China Railway Society,2022,44(1):1-7. | |
[2] | “十三五”和2016年中国铁路建设总体思路与要求[J]. 铁道学报, 2016,38(3):97. |
General ideas and requirements of railway construction in China in the 13th Five-Year Plan and 2016[J]. Journal of the China Railway Society,2016,38(3):97. | |
[3] | 王伟鑫, 葛显龙, 王旭, 等. 基于软逻辑关系的重复性项目调度工期:费用优化研究[J]. 管理工程学报, 2017,31(1):201-207. |
Wang W X, Ge X L, Wang X, et al. Time-cost trade-off of repetitive project scheduling with soft logic[J]. Journal of Industrial Engineering and Engineering Management,2017,31(1):201-207. | |
[4] | Johnston D W. Linear scheduling method for highway construction[J]. Journal of the Construction Division, 1981,107(2):247-261. |
[5] | Arditi D, Albulak M Z. Line-of-balance scheduling in pavement construction[J]. Journal of Construction Engineering and Management-ASCE,1986,112(3):411-424. |
[6] | 魏强. 高速铁路施工组织管理与技术[M]. 北京: 中国铁道出版社, 2020. |
Wei Q. Management and technology of high-speed railway construction organization[M]. Beijing: China Railway Publishing House, 2020. | |
[7] | Liu S S, Wang C J. Optimization model for resource assignment problems of linear construction projects[J]. Automation in Construction, 2007,16(4):460-473. |
[8] | Tang Y J, Liu R K, Sun Q X. Two-stage scheduling model for resource leveling of linear projects[J]. Journal of Construction Engineering and Management, 2014,140(7):04014022. |
[9] | 刘尧, 宋元斌, 李云祥. 多排序施工方案的工期优化算法设计[J]. 系统工程, 2019,37(2):150-158. |
Liu Y, Song Y B, Li Y X. Complex project schedule compression model based on multiple sequence alternatives schemes[J].Systems Engineering, 2019,37(2):150-158. | |
[10] | Zou X, Zhang L H. A constraint programming approach for scheduling repetitive projects with a typical activities considering soft logic[J]. Automation in Construction, 2020,109:102990. |
[11] | Hassan A, El-Rayes K, Attalla M. Stochastic scheduling optimization of repetitive construction projects to minimize project duration and cost[J]. International Journal of Construction Management, 2023,23(9):1447-1456. |
[12] | Zhao M Q, Wang X L, Yu J, et al. Optimization of construction duration and schedule robustness based on hybrid grey wolf optimizer with sine cosine algorithm[J]. Energies, 2020,13(1):215. |
[13] | Fatma F A. Multi-objective genetic optimization of linear construction projects[J]. HBRC Journal, 2012,8(2):144-151. |
[14] | 张立辉, 邹鑫, 乞建勋. 基于逆控制工序的重复性项目最短工期计算方法[J]. 中国管理科学, 2015,23(9):171-176. |
Zhang L H, Zou X, Qi J X. Time optimization model based on the backward controlling activity for repetitive construction projects[J]. Chinese Journal of Management Science, 2015,23(9):171-176. | |
[15] | 梁斌, 白思俊, 郭云涛. 基于模糊网络的项目工期计算及优化[J]. 管理工程学报, 2015,29(2):217-222. |
Liang B, Bai S J, Guo Y T. Project duration calculation and optimization based on fuzzy network[J]. Journal of Industrial Engineering and Engineering Management, 2015,29(2):217-222. | |
[16] | Bakry I, Moselhi O, Zayed T. Optimized scheduling and buffering of repetitive construction projects under uncertainty[J]. Engineering, Construction and Architectural Management, 2016,23(6):782-800. |
[17] | Salama T, Moselhi O. Multi-objective optimization for repetitive scheduling under uncertainty[J]. Engineering, Construction and Architectural Management, 2019,26(7):1294-1320. |
[18] | Biruk S, Jaśkowski P, Czarnigowska A. Updating linear schedules with lowest cost: A linear programming model[J]. IOP Conference Series: Materials Science and Engineering, 2017,245:072011. |
[19] | 刘仍奎, 王峰, 王福田, 等. 一种铁路工程施工计划优化方法及系统:中国专利,CN109146207B[P],2020.11.06. . |
Liu R K, Wang F, Wang F T, et al. The invention relates to an optimization method and system of railway engineering construction plan:China,CN109146207B[P],2020.11.06. . | |
[20] | Tang Y J, Liu R K, Sun Q X. Schedule control model for linear projects based on linear scheduling method and constraint programming[J]. Automation in Construction, 2014,37:22-37. |
[21] | Tang Y J, Liu R K, Wang F T, et al. Scheduling optimization of linear schedule with constraint programming[J]. Computer-Aided Civil and Infrastructure Engineering, 2018,33(2):124-151. |
[22] | Zou X, Wu G C, Zhang Q. Work continuity constraints in repetitive project scheduling considering soft logic[J]. Engineering, Construction and Architectural Management, 2021,28(6):1713-1738. |
[23] | Rashedi E, Rashedi E, Nezamabadi-pour H. A comprehensive survey on gravitational search algorithm[J]. Swarm and Evolutionary Computation, 2018,41:141-158. |
[24] | Pei J, Liu X B, Pardalos P M, et al. Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain[J]. The International Journal of Advanced Manufacturing Technology, 2014,70(1): 335-348. |
[25] | 轩华, 刘淑燕, 王薛苑, 等. 带不相关机的可重入柔性流水车间问题的改进灾变遗传算法[J]. 工业工程与管理, 2021,26(5):161-171. |
Xuan H, Liu S Y, Wang X Y, et al. An improved catastrophic genetic algorithm for re-entrant flexible flowshop problem with unrelated parallel machines[J].Industrial Engineering and Management, 2021,26(5):161-171. |
[1] | 王田, 汤寒冰, 施彦丞. 社交型网络拼团:定价、人数和消费者类型[J]. 中国管理科学, 2025, 33(6): 73-84. |
[2] | 南江霞, 吴小勇, 张茂军. 区块链赋能的低碳市场制造商产量竞争与碳减排技术合作[J]. 中国管理科学, 2025, 33(6): 360-368. |
[3] | 黄河, 李文平, 徐鸿雁. 政府补贴和成本分担共存时具有社会责任零售商的信息共享研究[J]. 中国管理科学, 2025, 33(6): 265-276. |
[4] | 马建华, 舒美珍, 潘燕春, 杨雯. EPR制度下竞争供应链渠道结构和政府回收奖惩机制研究[J]. 中国管理科学, 2025, 33(6): 277-288. |
[5] | 张运环, 葛泽慧, 王道平. 考虑合作模式和附加服务的网络广告服务链定价决策和渠道选择[J]. 中国管理科学, 2025, 33(6): 196-207. |
[6] | 夏西强, 李佩函, 贾家辉, 巫瑞, 路梦圆. 基于碳配额不同分配方式政府补贴对制造/再制造影响研究[J]. 中国管理科学, 2025, 33(5): 313-324. |
[7] | 王军进, 许淞俊, 刘家国. 考虑转化效率的竞争企业产能共享策略研究[J]. 中国管理科学, 2025, 33(5): 325-333. |
[8] | 胡丹, 周凌雲, 梁樑. 我国上市公司精准扶贫的农户增收效应研究[J]. 中国管理科学, 2025, 33(4): 12-23. |
[9] | 曹裕, 李想, 李青松. 双边市场网约车平台聚合策略选择研究[J]. 中国管理科学, 2025, 33(4): 142-153. |
[10] | 宋亚楠, 李梦瑶, 谷炜, 王道平, 南瑞娟. 考虑不同竞争模式的共享出行平台价格与服务决策研究[J]. 中国管理科学, 2025, 33(4): 154-164. |
[11] | 郑迪文, 谢卫红, 李淑荧, 李忠顺, 王永健. 基于微分博弈的消费者参与下政企合作的数字化转型策略研究[J]. 中国管理科学, 2025, 33(4): 224-234. |
[12] | 张华, 顾新. 供应链数字化与制造企业竞争优势的关系研究——供应链弹性的中介效应[J]. 中国管理科学, 2025, 33(4): 285-298. |
[13] | 边展, 张红艳. 考虑资金约束的制造商双渠道供应链融资策略[J]. 中国管理科学, 2025, 33(2): 292-299. |
[14] | 胡骏翡, 陈环月. 碳交易机制下废弃物发电项目柔性投资决策研究[J]. 中国管理科学, 2025, 33(2): 320-331. |
[15] | 傅海平, 贾富源, 曾赛星. 重大工程复杂装备创新:基于网络协同的视角[J]. 中国管理科学, 2025, 33(1): 232-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|