Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (1): 111-123.doi: 10.16381/j.cnki.issn1003-207x.2024.1913
Previous Articles Next Articles
Feng Shi1,2, Yang Yang3,4, Yun Yuan2,5, Jianmin Jia2,4,6()
Received:
2024-10-24
Revised:
2024-11-14
Online:
2025-01-25
Published:
2025-02-14
Contact:
Jianmin Jia
E-mail:jmjia@cuhk.edu.cn
CLC Number:
Feng Shi, Yang Yang, Yun Yuan, Jianmin Jia. Marketing Transformation in the Age of Artificial Intelligence[J]. Chinese Journal of Management Science, 2025, 33(1): 111-123.
1 | Davenport T, Guha A, Grewal D, et al. How artificial intelligence will change the future of marketing[J]. Journal of the Academy of Marketing Science, 2020, 48: 24-42. |
2 | Hoffman D L, Moreau C P, Stremersch S, et al. The rise of new technologies in marketing: A framework and outlook[J]. Journal of Marketing, 2022, 86(1): 1-6. |
3 | Mckinsey. The state of AI in early 2024: Gen AI adoption spikes and starts to generate value[EB/OL]. (2024-05-30)[2024-11-25]. . |
4 | Huang M H, Rust R T. A strategic framework for artificial intelligence in marketing[J]. Journal of the Academy of Marketing Science, 2021, 49: 30-50. |
5 | Mustak M, Salminen J, Plé L, et al. Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda[J]. Journal of Business Research, 2021, 124: 389-404. |
6 | Shin D, He S, Lee G M, et al. Enhancing social media analysis with visual data analytics: A deep learning approach[M]. Amsterdam: SSRN, 2020. |
7 | Peng J, Agarwal A, Hosanagar K, et al. Network overlap and content sharing on social media platforms[J]. Journal of Marketing Research, 2018, 55(4): 571-585. |
8 | Tan Y C, Chandukala S R, Reddy S K. Augmented reality in retail and its impact on sales[J]. Journal of Marketing, 2022, 86(1): 48-66. |
9 | Puntoni S, Reczek R W, Giesler M, et al. Consumers and artificial intelligence: An experiential perspective[J]. Journal of Marketing, 2021, 85(1): 131-151. |
10 | Huang M H, Rust R T. The caring machine: Feeling AI for customer care[J]. Journal of Marketing, 2024, 88(5):1-23. |
11 | Arora N, Chakraborty I, Nishimura Y. EXPRESS: AI-Human hybrids for marketing research: Leveraging LLMs as collaborators[J]. Journal of Marketing, 2024, DOI: 10.1177/00222429241276529 . |
12 | Cui D P, Curry D. Prediction in marketing using the support vector machine[J]. Marketing Science, 2005, 24(4): 595-615. |
13 | Venkatesan R, Kumar V, Bohling T. Optimal customer relationship management using Bayesian decision theory: An application for customer selection[J]. Journal of Marketing Research, 2007, 44(4): 579-594. |
14 | 刘景江, 郑畅然, 洪永淼. 机器学习如何赋能管理学研究?——国内外前沿综述和未来展望[J]. 管理世界, 2023, 39(9):191-216. |
Liu J J, Zheng C R, Hong Y M. How can machine learning empower management research? A domestic-foreign frontier review and future prospects[J]. Journal of Management World, 2023, 39(9):191-216. | |
15 | 杨扬, 刘圣, 李宜威, 等. 大数据营销: 综述与展望[J]. 系统工程理论与实践, 2020, 40(8):2150-2158. |
Yang Y, Liu S, Li Y W, et al. Big data marketing: Review and prospect[J]. Systems Engineering-Therory & Practice, 2020, 40(8):2150-2158. | |
16 | Dietvorst B J, Simmons J P, Massey C. Algorithm aversion: People erroneously avoid algorithms after seeing them err[J]. Journal of Experimental Psychology: General, 2015, 144(1): 114-126. |
17 | Cadario R, Longoni C, Morewedge C K. Understanding, explaining, and utilizing medical artificial intelligence[J]. Nature Human Behaviour, 2021, 5(12): 1636-1642. |
18 | Castelo N, Boegershausen J, Hildebrand C, et al. Understanding and improving consumer reactions to service bots[J]. Journal of Consumer Research, 2023, 50(4): 848-863. |
19 | Lefkeli D, Karataş M, Gürhan-Canli Z. Sharing information with AI (versus a human) impairs brand trust: The role of audience size inferences and sense of exploitation[J]. International Journal of Research in Marketing, 2024, 41(1): 138-155. |
20 | De Freitas J, Agarwal S, Schmitt B, et al. Psychological factors underlying attitudes toward AI tools[J]. Nature Human Behaviour, 2023, 7(11): 1845-1854. |
21 | Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215. |
22 | Nussberger A M, Luo L, Celis L E, et al. Public attitudes value interpretability but prioritize accuracy in artificial intelligence[J]. Nature Communications, 2022, 13(1): 5821. |
23 | Haslam N. Dehumanization: An integrative review[J]. Personality and Social Psychology Review, 2006, 10(3): 252-264. |
24 | Castelo N, Bos M W, Lehmann D R. Task-dependent algorithm aversion[J]. Journal of Marketing Research, 2019, 56(5): 809-825. |
25 | Longoni C, Cian L. Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect[J]. Journal of Marketing, 2022, 86(1): 91-108. |
26 | Pataranutaporn P, Liu R, Finn E, et al. Influencing human-AI interaction by priming beliefs about AI can increase perceived trustworthiness, empathy and effectiveness[J]. Nature Machine Intelligence, 2023, 5(10): 1076-1086. |
27 | Han E, Yin D Z, Zhang H. Bots with feelings: Should AI agents express positive emotion in customer service?[J]. Information Systems Research, 2023, 34(3): 1296-1311. |
28 | Crolic C, Thomaz F, Hadi R, et al. Blame the bot: Anthropomorphism and anger in customer-chatbot interactions[J]. Journal of Marketing, 2022, 86(1): 132-148. |
29 | Loughnan S, Haslam N. Animals and androids: Implicit associations between social categories and nonhumans[J]. Psychological Science, 2007, 18(2): 116-121. |
30 | Longoni C, Bonezzi A, Morewedge C K. Resistance to medical artificial intelligence[J]. Journal of Consumer Research, 2019, 46(4): 629-650. |
31 | Purcell Z A, Bonnefon J F. Humans feel too special for machines to score their morals[J]. PNAS nexus, 2023, 2(6): 1-7. |
32 | Reich T, Kaju A, Maglio S J. How to overcome algorithm aversion: Learning from mistakes[J]. Journal of Consumer Psychology, 2023, 33(2): 285-302. |
33 | Clegg M, Hofstetter R, de Bellis E, et al. Unveiling the mind of the machine[J]. Journal of Consumer Research, 2024, 51(2): 342-361. |
34 | Leotti L A, Iyengar S S, Ochsner K N. Born to choose: The origins and value of the need for control[J]. Trends in Cognitive Sciences, 2010, 14(10): 457-463. |
35 | Leung E, Paolacci G, Puntoni S. Man versus machine: Resisting automation in identity-based consumer behavior[J]. Journal of Marketing Research, 2018, 55(6): 818-831. |
36 | de Bellis E, Johar G V, Poletti N. Meaning of manual labor impedes consumer adoption of autonomous products[J]. Journal of Marketing, 2023, 87(6): 949-965. |
37 | Dong B B, Zhuang M Z, Fang E, et al. Tales of two channels: Digital advertising performance between AI recommendation and user subscription channels[J]. Journal of Marketing, 2024, 88(2): 141-162. |
38 | Longoni C, Cian L, Kyung E J. Algorithmic transference: People overgeneralize failures of AI in the government[J]. Journal of Marketing Research, 2023, 60(1): 170-188. |
39 | Yalcin G, Lim S, Puntoni S, et al. Thumbs up or down: Consumer reactions to decisions by algorithms versus humans[J]. Journal of Marketing Research, 2022, 59(4): 696-717. |
40 | Karataş M, Cutright K M. Thinking about god increases acceptance of artificial intelligence in decision-making[J]. Proceedings of the National Academy of Sciences, 2023, 120(33): e2218961120. |
41 | Zhao G Y, Li Y T, Xu Q R. From emotion AI to cognitive AI[J]. International Journal of Network Dynamics and Intelligence, 2022, 1(1): 65-72. |
42 | Yoo Y, Boland Jr R J, Lyytinen K, et al. Organizing for innovation in the digitized world[J]. Organization Science, 2012, 23(5): 1398-1408. |
43 | Cooper R G. The AI transformation of product innovation[J]. Industrial Marketing Management, 2024, 119: 62-74. |
44 | Lou B W, Wu L. AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms. Evidence from a Large-scale Examination of Bio-pharma Firms[J]. MIS Quarterly, 2021, 45(3): 1451-1482. |
45 | Hou J R, Zhang J, Zhang K P. Pictures that are worth a thousand donations: How emotions in project images drive the success of online charity fundraising campaigns? An image design perspective[J]. Management Information Systems Quarterly, 2023, 47(2): 535-584. |
46 | Sisodia A, Burnap A, Kumar V. EXPRESS: Generative interpretable visual design: Using disentanglement for visual conjoint analysis[J]. Journal of Marketing Research, 2024, DOI: 10.1177/00222437241276736 . |
47 | Yang Y, Zhang K P, Kannan P K. Identifying market structure: A deep network representation learning of social engagement[J]. Journal of Marketing, 2022, 86(4): 37-56. |
48 | Zhou E, Lee D. Generative artificial intelligence, human creativity, and art[J]. PNAS Nexus, 2024, 3(3): 1-8. |
49 | Girotra K, Meincke L, Terwiesch C, et al. Using large language models for idea generation in innovation[R]. Working Paper, SSRN, 2023. |
50 | Calvano E, Calzolari G, Denicolo V, et al. Artificial intelligence, algorithmic pricing, and collusion[J]. American Economic Review, 2020, 110(10): 3267-3297. |
51 | Chen L Y, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2024, 70(2): 714-750. |
52 | Trusov M, Ma L Y, Jamal Z. Crumbs of the cookie: User profiling in customer-base analysis and behavioral targeting[J]. Marketing Science, 2016, 35(3): 405-426. |
53 | Calvano E, Calzolari G, Denicolò V, et al. Algorithmic pricing what implications for competition policy?[J]. Review of Industrial Organization, 2019, 55: 155-171. |
54 | Liu X. Dynamic coupon targeting using batch deep reinforcement learning: An application to livestream shopping[J]. Marketing Science, 2023, 42(4): 637-658. |
55 | Elmachtoub A N, Gupta V, Hamilton M L. The value of personalized pricing[J]. Management Science, 2021, 67(10): 6055-6070. |
56 | Nunan D, Di Domenico M L. Value creation in an algorithmic world: Towards an ethics of dynamic pricing[J]. Journal of Business Research, 2022, 150: 451-460. |
57 | Zhang S Y, Mehta N, Singh P V, et al. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality? An analysis in the context of airbnb[J]. Marketing Science, 2021, 40(5): 813-820. |
58 | Karlinsky-Shichor Y, Netzer O. Automating the b2b salesperson pricing decisions: A human-machine hybrid approach[J]. Marketing Science, 2024, 43(1): 138-157. |
59 | Bartlett R, Morse A, Stanton R, et al. Consumer-lending discrimination in the fintech era[J]. Journal of Financial Economics, 2022, 143(1): 30-56. |
60 | Cohen M C, Elmachtoub A N, Lei X. Price discrimination with fairness constraints[J]. Management Science, 2022, 68(12): 8536-8552. |
61 | Abada I, Lambin X. Artificial intelligence: Can seemingly collusive outcomes be avoided?[J]. Management Science, 2023, 69(9): 5042-5065. |
62 | Reisenbichler M, Reutterer T, Schweidel D, et al. Supporting content marketing with natural language generation[J]. Marketing Science, 2022, 41(3):441-452. |
63 | Bell J J, Pescher C, Tellis G J, et al. Can AI help in ideation? A theory-based model for idea screening in crowdsourcing contests[J]. Marketing Science, 2024, 43(1): 54-72. |
64 | Li P Y, Castelo N, Katona Z, et al. Frontiers: Determining the validity of large language models for automated perceptual analysis[J]. Marketing Science, 2024, 43(2): 254-266. |
65 | Goli A, Singh A. Frontiers: Can large language models capture human preferences?[J]. Marketing Science, 2024, 43(4):709-722. |
66 | Xiao L, Wu D J, Ding M. A smart ad display system[J]. Information Systems Research, 2024, DOI: 10.1287/isre.2020.0128 . |
67 | Todri V, Ghose A, Singh P V. Trade-offs in online advertising: Advertising effectiveness and annoyance dynamics across the purchase funnel[J]. Information Systems Research, 2020, 31(1): 102-125. |
68 | Miao F, Kozlenkova I V, Wang H Z, et al. An emerging theory of avatar marketing[J]. Journal of Marketing, 2022, 86(1): 67-90. |
69 | Verhagen T, Van Nes J, Feldberg F, et al. Virtual customer service agents: Using social presence and personalization to shape online service encounters[J]. Journal of Computer-Mediated Communication, 2014, 19(3): 529-545. |
70 | Hsiao S H, Wang Y Y, Lin T L J. The impact of low-immersion virtual reality on product sales: Insights from the real estate industry[J]. Decision Support Systems, 2024, 178: 114131. |
71 | Luo X M, Qin M S, Fang Z, et al. Artificial intelligence coaches for sales agents: Caveats and solutions[J]. Journal of Marketing, 2021, 85(2): 14-32. |
72 | Kim J H, Kim M, Kwak D W, et al. Home-tutoring services assisted with technology: Investigating the role of artificial intelligence using a randomized field experiment[J]. Journal of Marketing Research, 2022, 59(1): 79-96. |
73 | Bergner A S, Hildebrand C, Häubl G. Machine talk: How verbal embodiment in conversational AI shapes consumer-brand relationships[J]. Journal of Consumer Research, 2023, 50(4): 742-764. |
74 | Novak T, Hoffman D L. Automation assemblages in the internet of things: Discovering qualitative practices at the boundaries of quantitative change[J]. Journal of Consumer Research, 2023, 49(5): 811-837. |
75 | Luo X M, Tong S L, Fang Z, et al. Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases[J]. Marketing Science, 2019, 38(6): 937-947. |
76 | Seymour M, Yuan L, Riemer K, et al. Less artificial, more intelligent: Understanding affinity, trustworthiness, and preference for digital humans[J]. Information Systems Research, 2024, DOI: 10.1287/isre.2022.0203 . |
77 | Xu Y Q, Dai H Y, Yan W F. Identity disclosure and anthropomorphism in voice chatbot design: A field experiment[J]. Management Science, 2024, DOI: 10.1287/mnsc.2022.03833 . |
78 | Schuetzler R M, Grimes G M, Scott Giboney J. The impact of chatbot conversational skill on engagement and perceived humanness[J]. Journal of Management Information Systems, 2020, 37(3): 875-900. |
79 | Schanke S, Burtch G, Ray G. Estimating the impact of “humanizing” customer service chatbots[J]. Information Systems Research, 2021, 32(3): 736-751. |
80 | Ledro C, Nosella A, Dalla Pozza I. Integration of AI in CRM: Challenges and guidelines[J]. Journal of Open Innovation: Technology, Market, and Complexity, 2023, 9(4): 100151. |
81 | Libai B, Bart Y, Gensler S, et al. Brave new world? On AI and the management of customer relationships[J]. Journal of Interactive Marketing, 2020, 51(1): 44-56. |
82 | Chatterjee S, Rana N P, Tamilmani K, et al. The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context[J]. Industrial Marketing Management, 2021, 97: 205-219. |
83 | Martínez A, Schmuck C, Pereverzyev Jr S, et al. A machine learning framework for customer purchase prediction in the non-contractual setting[J]. European Journal of Operational Research, 2020, 281(3): 588-596. |
84 | Melzner J, Bonezzi A, Meyvis T. Information disclosure in the era of voice technology[J]. Journal of Marketing, 2023, 87(4): 491-509. |
85 | Zhou M, Chen G H, Ferreira P, et al. Consumer behavior in the online classroom: Using video analytics and machine learning to understand the consumption of video courseware[J]. Journal of Marketing Research, 2021, 58(6): 1079-1100. |
86 | Wei Q, Mu Y, Guo X H, et al. Dynamic bayesian network-based product recommendation considering consumers’multistage shopping journeys: A marketing funnel perspective[J]. Information Systems Research, 2024, 35(3): 1382-1402. |
87 | Davenport T H, Ronanki R. Artificial intelligence for the real world[J]. Harvard Business Review, 2018, 96(1): 108-116. |
88 | Spanellis A, Dӧrfler V, MacBryde J. Investigating the potential for using gamification to empower knowledge workers[J]. Expert Systems with Applications, 2020, 160: 113694. |
89 | Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence[J]. Business Horizons, 2019, 62(1): 15-25. |
90 | Shirdastian H, Laroche M, Richard M O. Using big data analytics to study brand authenticity sentiments: The case of Starbucks on Twitter[J]. International Journal of Information Management, 2019, 48: 291-307. |
91 | Neslin S A, Gupta S, Kamakura W, et al. Defection detection: Measuring and understanding the predictive accuracy of customer churn models[J]. Journal of Marketing Research, 2006, 43(2): 204-211. |
92 | Selamat M A, Windasari N A. Chatbot for SMEs: Integrating customer and business owner perspectives[J]. Technology in Society, 2021, 66: 101685. |
93 | Zhou X Y, Yan X, Jiang Y W. Making sense? The sensory-specific nature of virtual influencer effectiveness[J]. Journal of Marketing, 2024, 88(4): 84-106. |
94 | Chen L W, Hsieh J J, Chan K W. Techno-service-profit chain: The Impacts of iot-enabled algorithmic customer service systems from an interdisciplinary perspective[J]. Management Information Systems Quarterly, 2024, 48(3): 1077-1120. |
95 | Yam K C, Goh E Y, Fehr R, et al. When your boss is a robot: Workers are more spiteful to robot supervisors that seem more human[J]. Journal of Experimental Social Psychology, 2022, 102: 104360. |
96 | Claudé M, Combe D. The roles of artificial intelligence and humans in decision making: Towards augmented humans?A focus on knowledge-intensive firms[D]. Umeå: Umeå University, 2018. |
97 | Miklós-Thal J, Tucker C. Collusion by algorithm: Does better demand prediction facilitate coordination between sellers?[J]. Management Science, 2019, 65(4): 1552-1561. |
98 | Chandra S, Shirish A, Srivastava S C. To be or not to be…human? Theorizing the role of human-like competencies in conversational artificial intelligence agents[J]. Journal of Management Information Systems, 2022, 39(4): 969-1005. |
99 | El Khatib M, Al Falasi A. Effects of artificial intelligence on decision making in project management[J]. American Journal of Industrial and Business Management, 2021, 11(3): 251-260. |
100 | Ross M, Taylor J. Managing AI decision-making tools[R]. Discussion Paper, Harvard Business Review, 2021. |
101 | Nishant R, Kennedy M, Corbett J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda[J]. International Journal of Information Management, 2020, 53: 102104. |
102 | Huang M H, Rust R T. Engaged to a robot? The role of AI in service[J]. Journal of Service Research, 2021, 24(1): 30-41. |
103 | Manser Payne E H, Dahl A J, Peltier J. Digital servitization value co-creation framework for AI services: A research agenda for digital transformation in financial service ecosystems[J]. Journal of Research in Interactive Marketing, 2021, 15(2): 200-222. |
104 | Dawar N, Bendle N. Marketing in the age of alexa[R]. Discussion Paper, Harvard Business Review, 2018. |
105 | Wang T, He C, Jin F J, et al. Evaluating the effectiveness of marketing campaigns for malls using a novel interpretable machine learning model[J]. Information systems research, 2022, 33(2): 659-677. |
106 | Yoo K, Haenlein M, Hewett K. A whole new world: Charting unexplored territories in consumer research with generative artificial intelligence[R]. Working Paper, Marketing Science Institute, 2024. |
107 | 罗映宇, 朱国玮, 钱无忌, 等. 人工智能时代的算法厌恶: 研究框架与未来展望[J]. 管理世界, 2023, 39(10):205-227. |
Luo Y Y, Zhu G W, Qian W J, et al. Algorithm aversion in the era of artificial intelligence: Research framework and future agenda[J]. Journal of Management World, 2023, 39(10): 205-227. | |
108 | 吴小龙, 肖静华, 吴记. 当创意遇到智能: 人与AI协同的产品创意案例研究[J]. 管理世界, 2023, 39(5): 112-126. |
Wu X L, Xiao J H, Wu J. When creativity meets intelligence: A case study of human-AI collaboration in product innovation[J]. Journal of Management World, 2023, 39(5): 112-126. |
[1] | Xiangpei Hu, Yaxian Zhou. Review of Research on Economics and Management Based on Generative Artificial Intelligence [J]. Chinese Journal of Management Science, 2025, 33(1): 76-97. |
[2] | YANG Shan-lin, LI Xiao-jian, ZHANG Qiang, JIAO Jian-ling, YANG Chang-hui. Artificial Intelligence and Management Transformation [J]. Chinese Journal of Management Science, 2023, 31(6): 1-11. |
[3] | SONG Jin-bo, ZHOU Yu-shan, HE Qiu-ying. The Impact of Emotional Load on Service Quality and Operational Efficiency of Online Political Inquiry Platform—Evidence from Textual Data [J]. Chinese Journal of Management Science, 2023, 31(3): 133-142. |
[4] | LIU Xiang-guan, GAO Chuan-hou, LUO Shi-hua, WANG Yi-kang, WU Wu-lin. Hua Luogeng System Engineering of Management Science and Industrial Big Data Analysis [J]. Chinese Journal of Management Science, 2022, 30(11): 8-19. |
[5] | XIE Meng-meng, XIA Yan, PAN Jiao-feng, GUO Jian-feng. Artificial Intelligence,Technological Change and Low-skill Employment. Empirical Evidence from Chinese Manufacturing Firms [J]. Chinese Journal of Management Science, 2020, 28(12): 54-66. |
[6] | ZHANG Hong-yan. Study on the Sensitivity of Implied volatility Based on Artificial Intelligence [J]. Chinese Journal of Management Science, 2008, 16(3): 125-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|