Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (4): 131-141.doi: 10.16381/j.cnki.issn1003-207x.2023.0447
Previous Articles Next Articles
Shuai Zhang1, Siliang Liu1,2, Wenyu Zhang1()
Received:
2023-03-18
Revised:
2023-05-28
Online:
2025-04-25
Published:
2025-04-29
Contact:
Wenyu Zhang
E-mail:wyzhang@e.ntu.edu.sg
CLC Number:
Shuai Zhang, Siliang Liu, Wenyu Zhang. Vehicle Routing Problems with Time Windows under the Collaborative Delivery Mode of Electric Vehicle-drone[J]. Chinese Journal of Management Science, 2025, 33(4): 131-141.
"
符号 | 定义 |
---|---|
节点、集合 | |
顾客节点集合 | |
作为出发地的仓库节点 | |
作为返回地的仓库节点 | |
充电站节点集合 | |
虚拟充电站节点集合 | |
虚拟充电站、出发地仓库节点集合, | |
顾客、出发地仓库节点集合, | |
顾客、虚拟充电站节点集合, | |
顾客、虚拟充电站、出发地仓库节点集合, | |
顾客、虚拟充电站、返回地仓库节点集合, | |
顾客、虚拟充电站、出发地和返回地仓库节点集合, | |
参数 | |
每辆电动车的派遣成本 | |
电动车每单位距离的行驶成本 | |
无人机每单位距离的行驶成本 | |
电动车的载货容量 | |
无人机的载货容量 | |
电动车的电池容量 | |
无人机飞行续航时间 | |
节点i的商品需求量 | |
电动车/无人机在节点i卸下商品的所需时间 | |
节点i的时间窗,其中 | |
电动车的电池充电系数 | |
电动车的电池耗电系数 | |
电动车从节点i到节点j的行驶时间 | |
无人机从节点i到节点j的行驶时间 | |
节点i到节点j的距离 | |
节点i的配送标记, | |
决策变量 | |
0-1变量,若电动车从节点i到节点j,则 | |
0-1变量,若无人机从仓库到节点i后返回仓库,则 | |
连续变量,电动车到达节点i时剩余电池容量 | |
连续变量,电动车到达节点i时剩余载货容量 | |
连续变量,电动车到达节点i的时间 |
"
小规模 算例 | Gurobi | 构造启发式算法 | 拓展型ALNS算法 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
结果 | 求解时间(s) | 平均结果 | 求解时间(s) | Gap1(%) | 平均结果 | 求解时间(s) | Gap2(%) | |||
c'101-10-5 | 2597.00 | 94.44 | 2621.60 | 0.04 | 0.94 | 2597.00 | 29.55 | 0.00 | ||
c'104-10-5 | 1821.79 | 1800.00 | 1902.80 | 0.01 | 4.26 | 1821.79 | 22.38 | 0.00 | ||
c'202-10-5 | 1391.60 | 1155.56 | 1813.77 | 0.01 | 23.28 | 1391.60 | 46.87 | 0.00 | ||
c'205-10-5 | 1203.87 | 1.94 | 1281.12 | 0.01 | 6.03 | 1203.87 | 21.67 | 0.00 | ||
r'102-10-5 | 2247.57 | 15.18 | 2808.22 | 0.01 | 19.96 | 2247.57 | 19.68 | 0.00 | ||
r'103-10-5 | 1588.29 | 1800.00 | 1588.29 | 0.01 | 0.00 | 1588.29 | 18.51 | 0.00 | ||
r'201-10-5 | 1223.90 | 76.28 | 1245.99 | 0.03 | 1.77 | 1223.90 | 33.53 | 0.00 | ||
r'203-10-5 | 1154.64 | 1800.00 | 1709.87 | 0.02 | 32.47 | 1154.64 | 57.59 | 0.00 | ||
rc'102-10-5 | 3236.68 | 9.45 | 3821.39 | 0.01 | 15.30 | 3236.68 | 19.48 | 0.00 | ||
rc'108-10-5 | 2537.78 | 1245.27 | 2847.85 | 0.02 | 10.89 | 2537.78 | 24.27 | 0.00 | ||
rc'201-10-5 | 1622.50 | 17.53 | 2198.19 | 0.02 | 26.19 | 1622.50 | 35.00 | 0.00 | ||
rc'205-10-5 | 1971.73 | 82.66 | 2401.61 | 0.02 | 17.90 | 1971.73 | 30.29 | 0.00 | ||
c'103-15-5 | 2653.28 | 1800.00 | 2640.57 | 0.05 | -0.48 | 2623.14 | 88.37 | -1.14 | ||
c'106-15-5 | 1819.53 | 16.84 | 2429.24 | 0.02 | 25.10 | 1819.53 | 56.63 | 0.00 | ||
c'202-15-5 | 2139.79 | 1800.00 | 2303.25 | 0.04 | 7.10 | 2139.79 | 97.38 | 0.00 | ||
c'208-15-5 | 1354.16 | 427.65 | 1472.82 | 0.04 | 8.06 | 1354.16 | 78.38 | 0.00 | ||
r'102-15-5 | 3217.10 | 1800.00 | 4440.68 | 0.04 | 27.55 | 3227.86 | 57.76 | 0.33 | ||
r'105-15-5 | 2489.84 | 1800.00 | 3100.90 | 0.03 | 19.71 | 2489.84 | 53.26 | 0.00 | ||
r'202-15-5 | 2074.01 | 1800.00 | 2557.28 | 0.10 | 18.90 | 2074.01 | 133.84 | 0.00 | ||
r'209-15-5 | 1439.71 | 1800.00 | 1972.48 | 0.13 | 27.01 | 1439.71 | 140.68 | 0.00 | ||
rc'103-15-5 | 3176.28 | 1800.00 | 3320.36 | 0.02 | 4.34 | 3176.28 | 46.57 | 0.00 | ||
rc'108-15-5 | 2635.07 | 1800.00 | 3543.97 | 0.05 | 25.65 | 2596.64 | 63.35 | -1.46 | ||
rc'202-15-5 | 2183.16 | 1800.00 | 2614.13 | 0.09 | 16.49 | 2183.16 | 121.08 | 0.00 | ||
rc'204-15-5 | 1656.44 | 1800.00 | 1879.70 | 0.09 | 11.885 | 1624.06 | 258.38 | -1.95 | ||
平均值 | 2059.82 | 1105.95 | 2438.17 | 0.04 | 15.52 | 2056.06 | 64.77 | -0.18 |
"
大规模算例 | 拓展型ALNS算法 | 原始ALNS算法 | |||||||
---|---|---|---|---|---|---|---|---|---|
最好结果 | 最差结果 | 平均结果 | 求解时间(s) | 最好结果 | 最差结果 | 平均结果 | 求解时间(s) | ||
c'101-50-21 | 4026.94 | 4175.90 | 4074.62 | 1733.34 | 4032.22 | 4633.50 | 4331.44 | 1810.12 | |
c'104-50-21 | 3445.51 | 3968.39 | 3647.74 | 2337.22 | 3700.17 | 4163.13 | 3918.14 | 2212.08 | |
c'202-50-21 | 2186.31 | 2332.52 | 2246.10 | 3471.77 | 2204.61 | 2774.92 | 2400.59 | 3510.34 | |
c'205-50-21 | 2179.71 | 2312.07 | 2213.34 | 3373.58 | 2186.29 | 2481.25 | 2387.98 | 3632.94 | |
r'102-50-21 | 7853.29 | 8775.69 | 8222.46 | 1437.06 | 7915.18 | 8568.89 | 8224.19 | 2008.88 | |
r'103-50-21 | 6410.88 | 7151.83 | 6785.54 | 1643.21 | 6387.14 | 7664.78 | 6874.59 | 2130.63 | |
r'201-50-21 | 3575.30 | 3695.09 | 3632.72 | 3268.21 | 3585.84 | 3878.04 | 3674.69 | 2512.29 | |
r'203-50-21 | 2636.83 | 3023.25 | 2808.07 | 3784.78 | 2705.28 | 3165.94 | 2838.17 | 3530.82 | |
rc'102-50-21 | 6822.06 | 8085.07 | 7608.92 | 1518.09 | 7343.42 | 8047.72 | 7691.07 | 1986.68 | |
rc'108-50-21 | 4982.78 | 5876.91 | 5585.97 | 1819.73 | 4996.45 | 6548.56 | 5603.96 | 2288.80 | |
rc'201-50-21 | 4151.51 | 4848.81 | 4422.21 | 3540.07 | 4232.24 | 4843.93 | 4493.76 | 2660.32 | |
rc'205-50-21 | 3143.20 | 3727.59 | 3439.14 | 4056.24 | 3221.38 | 3921.27 | 3608.49 | 3676.23 | |
c'103-75-21 | 5975.25 | 6595.09 | 6284.27 | 5638.79 | 6442.85 | 7264.70 | 6767.96 | 6659.92 | |
c'208-75-21 | 2945.13 | 3561.68 | 3182.93 | 13658.89 | 3281.87 | 3985.13 | 3521.66 | 12331.50 | |
r'102-75-21 | 11088.43 | 11801.42 | 11461.22 | 4163.39 | 10974.41 | 11731.95 | 11517.31 | 5831.83 | |
r'209-75-21 | 3433.44 | 3721.12 | 3537.16 | 14956.28 | 3390.15 | 4062.27 | 3854.47 | 12420.52 | |
rc'103-75-21 | 8382.04 | 9712.31 | 9070.71 | 4554.43 | 9045.72 | 10066.35 | 9444.52 | 6338.62 | |
rc'204-75-21 | 3316.06 | 4159.33 | 3646.66 | 18842.94 | 3690.78 | 4147.93 | 3838.15 | 13677.38 |
"
算例 | EVRPTW-D模型 | 基准模型 | 成本 节省比(%) |
---|---|---|---|
c'101-50-21 | 4403.83 | 4074.62 | 7.48 |
c'104-50-21 | 4154.12 | 3647.74 | 12.19 |
c'202-50-21 | 2679.77 | 2246.10 | 16.18 |
c'205-50-21 | 2749.42 | 2213.34 | 19.50 |
r'102-50-21 | 8464.87 | 8222.46 | 2.86 |
r'103-50-21 | 7008.55 | 6785.54 | 3.18 |
r'201-50-21 | 4031.61 | 3632.72 | 9.89 |
r'203-50-21 | 2984.04 | 2808.07 | 5.90 |
rc'102-50-21 | 7821.50 | 7608.92 | 2.72 |
rc'108-50-21 | 5757.45 | 5585.97 | 2.98 |
rc'201-50-21 | 4470.19 | 4422.21 | 1.07 |
rc'205-50-21 | 3632.78 | 3439.14 | 5.33 |
c'103-75-21 | 6651.91 | 6284.27 | 5.53 |
c'208-75-21 | 3490.21 | 3182.93 | 8.80 |
r'102-75-21 | 11802.24 | 11461.22 | 2.89 |
r'209-75-21 | 4054.40 | 3537.16 | 12.76 |
rc'103-75-21 | 9572.20 | 9070.71 | 5.24 |
rc'204-75-21 | 3969.89 | 3646.66 | 8.14 |
平均值 | 5427.72 | 5103.88 | 5.97 |
1 | 任璇, 黄辉, 于少伟, 等. 车辆与无人机组合配送研究综述[J]. 控制与决策, 2021, 36(10): 2313-2327. |
Ren X, Huang H, Yu S W, et al. Review on vehicle-UAV combined delivery problem[J]. Control and Decision, 2021, 36(10): 2313-2327. | |
2 | 郭戈, 张振琳. 电动车辆路径优化研究与进展[J]. 控制与决策, 2018, 33(10): 1729-1739. |
Guo G, Zhang Z L. Status and development of electric vehicle routing optimization [J]. Control and Decision, 2018, 33(10): 1729-1739. | |
3 | 张歆悦, 靳鹏, 胡笑旋, 等. 时间依赖型多配送中心带时间窗的开放式车辆路径问题研究[J]. 中国管理科学, 2024, 32(1): 146-157. |
Zhang X Y, Jin P, Hu X X, et al. Research on the time-dependent multi-depot open vehicle routing problem with time windows[J]. Chinese Journal of Managent Science, 2024, 32(1): 146-157. | |
4 | Schneider M, Stenger A, Goeke D. The electric vehicle-routing problem with time windows and recharging stations[J]. Transportation Science, 2014, 48(4): 500-520. |
5 | Keskin M, Laporte G, Çatay B. Electric vehicle routing problem with time-dependent waiting times at recharging stations[J]. Computers & Operations Research, 2019, 107: 77-94. |
6 | 黄建华, 刘方翔. 动态负载下电动汽车充电策略及路径优化问题[J]. 计算机集成制造系统, 2023, 29(11):3909-3921. |
Huang J H, Liu F X. Charging strategy and routing optimization of electric vehicles under dynamic load[J]. Computer Integrated Manufacturing Systems, 2023, 29(11):3909-3921. | |
7 | Taş D. Electric vehicle routing with flexible time windows: A column generation solution approach[J]. Transportation Letters, 2021, 13(2): 97-103. |
8 | Sadati M E H, Akbari V, Çatay B. Electric vehicle routing problem with flexible deliveries[J]. International Journal of Production Research, 2022, 60(13): 4268-4294. |
9 | Murray C C, Chu A G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86-109. |
10 | Agatz N, Bouman P, Schmidt M. Optimization approaches for the traveling salesman problem with drone[J]. Transportation Science, 2018, 52(4): 965-981. |
11 | 吴廷映, 陶新月, 孟婷. “卡车+无人机”模式下带时间窗的取送货车辆路径问题[J]. 计算机集成制造系统, 2023, 29(7): 2440-2448. |
Wu T Y, Tao X Y, Meng T. Pickup and delivery problem with time windows in the mode of “Truck+Drone”[J]. Computer Integrated Manufacturing Systems, 2023, 29(7): 2440-2448. | |
12 | Zhang S, Liu S L, Xu W B, et al. A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance[J]. Computers & Industrial Engineering, 2022, 173: 108679. |
13 | 颜瑞, 陈立双, 朱晓宁, 等. 考虑区域限制的卡车搭载无人机车辆路径问题研究[J]. 中国管理科学, 2022, 30(5): 144-155. |
Yan R, Chen L S, Zhu X N, et al. Research on vehicle routing problem with truck and drone considering regiona restriction[J]. Chinese Journal of Managent Science, 2022, 30(5): 144-155. | |
14 | 高佳静, 镇璐. 多卡车多机器人联合配送系统路径问题研究[J]. 中国管理科学, 2023, 31(3): 48-57. |
Gao J J, Zhen L. Research on routing problem for joint delivery system based on multiple trucks and robots[J]. Chinese Journal of Managent Science, 2023, 31(3): 48-57. | |
15 | Ham A M. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 1-14. |
16 | Nguyen M A, Dang G T H, Hà M H, et al. The min-cost parallel drone scheduling vehicle routing problem[J]. European Journal of Operational Research, 2022, 299(3): 910-930. |
17 | Kyriakakis N A, Stamadianos T, Marinaki M, et al. The electric vehicle routing problem with drones: An energy minimization approach for aerial deliveries[J]. Cleaner Logistics and Supply Chain, 2022,4: 100041. |
18 | Mara S T W, Sarker R, Essam D, et al. Solving electric vehicle-drone routing problem using memetic algorithm[J]. Swarm and Evolutionary Computation, 2023, 79: 101295. |
19 | Jia Y H, Mei Y, Zhang M J. Confidence-based ant colony optimization for capacitated electric vehicle routing problem with comparison of different encoding schemes[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 1394-1408. |
20 | Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4): 455-472. |
21 | Solomon M M. Algorithms for the vehicle routing and scheduling problems with time window constraints[J]. Operations Research, 1987, 35(2): 254-265. |
[1] | Guiqin Xue, Xianlong Ge. Study on Two-stage Dynamic Vehicle Scheduling Optimization Considering the Proactive Category [J]. Chinese Journal of Management Science, 2024, 32(12): 164-172. |
[2] | Xinyue Zhang,Peng Jin,Xiaoxuan Hu,Moning Zhu. Research on the Time-dependent Multi-depot Open Vehicle Routing Problem with Time Windows [J]. Chinese Journal of Management Science, 2024, 32(1): 146-157. |
[3] | HE Pei-yang, LI Kun-peng, TIAN Qian-nan. The Integrated Production and Transportation Scheduling Problem Based on 3D Printing Technology [J]. Chinese Journal of Management Science, 2023, 31(4): 239-249. |
[4] | Xian-cheng ZHOU,Tao-ying JIANG,Cai-hong HE,Li WANG,Yang LV. Green Vehicle Routing Model and Its Solution Algorithm in Cold-chain Logistics Distribution [J]. Chinese Journal of Management Science, 2023, 31(12): 203-214. |
[5] | TANG Zhao-ping, QIN Jin, SUN Jian-ping. Robust Optimization for Railway Emergency Location-Routing Based on Non-probabilistic Reliability [J]. Chinese Journal of Management Science, 2022, 30(9): 206-216. |
[6] | GE Xian-long, WEN Peng-zhe, XUE Gui-qin. Two-echelon Dynamic Vehicle Routing Problem with Request Forecasting [J]. Chinese Journal of Management Science, 2022, 30(8): 210-220. |
[7] | LI Yang, FAN Hou-ming, ZHANG Xiao-nan. A Periodic Optimization Model and Solution for Capacitated Vehicle Routing Problem with Dynamic Requests [J]. Chinese Journal of Management Science, 2022, 30(8): 254-266. |
[8] | YAN Rui, CHEN Li-shuang, ZHU Xiao-ning, TIAN Hao-tong, WEN Ya, ZHANG Qun. Research on Vehicle Routing Problem with Truck and Drone Considering Regional Restriction [J]. Chinese Journal of Management Science, 2022, 30(5): 144-155. |
[9] | XU Bao-guang, CHANG Jia-xin, GAO Min-gang. Research on Routing Problems about Road Information Collection Considering Mixed Mapping Method [J]. Chinese Journal of Management Science, 2022, 30(4): 218-227. |
[10] | LIU Ming, XU Xi-fen, NING Jing, CAO Jie. Modeling and Optimizing Method for Rebalancing the Dock-less Bicycles based on Order Data Analysis [J]. Chinese Journal of Management Science, 2022, 30(4): 275-286. |
[11] | GUO Fang, HUANG Zhi-hong, HUANG Wei-lai, YANG Chao. Optimal Planning of the Electric Vehicle Routing and Battery Charging Problem with Self-pickup and Door-to-door Delivery Service [J]. Chinese Journal of Management Science, 2022, 30(2): 264-275. |
[12] | TANG Hui-ling, TANG Heng-shu, ZHU Xing-liang. Research on Low-carbon Vehicle Routing Problem Based on Modified Ant Colony Algorithm [J]. Chinese Journal of Management Science, 2021, 29(7): 118-127. |
[13] | GUO Dong-wei, DING Gen-hong, LIU Wei. Improved Multi-Strategy Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows [J]. Chinese Journal of Management Science, 2020, 28(7): 204-211. |
[14] | GUO Fang, YANG Jun, YANG Chao. Study on Heterogeneous Electric Vehicle Routing and Batterycharging Problem with the Consideration of Differentiated Service Cost [J]. Chinese Journal of Management Science, 2019, 27(8): 118-128. |
[15] | FANG Wen-ting, AI Shi-zhong, WANG Qing, FAN Jun-bo. Research on Cold Chain Logistics Distribution Path Optimization Based on Hybrid Ant Colony Algorithm [J]. Chinese Journal of Management Science, 2019, 27(11): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|