1 |
Cochrane J H. Asset pricing theory: Revised edition[M]. Princeton: Princeton University Press, 2005.
|
2 |
Lettau M, Pelger M. Estimating latent asset-pricing factors[J]. Journal of Econometrics, 2020, 218(1): 1-31.
|
3 |
Freyberger J, Neuhierl A, Weber M. Dissecting characteristics nonparametrically[J]. The Review of Financial Studies, 2020, 33(5): 2326-2377.
|
4 |
Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.
|
5 |
Kelly B, Pruitt S, Su Y N. Characteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics, 2019, 134(3): 501-524.
|
6 |
Gu S H, Kelly B, Xiu D C. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273.
|
7 |
Orimoloye L O, Sung M C, Ma T J, et al. Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices[J].Expert Systems with Applications,2020,139: 112828.
|
8 |
Wu W B, Chen J Q, Yang Z B, et al. A cross-sectional machine learning approach for hedge fund return prediction and selection[J]. Management Science, 2020, 67(7): 4577-4601.
|
9 |
姜富伟, 马甜, 张宏伟. 高风险低收益? 基于机器学习的动态CAPM模型解释[J]. 管理科学学报, 2021, 24(1): 109-126.
|
|
Jiang F W, Ma T, Zhang H W. High risk low return? Explanation from machine learning based conditional CAPM model[J]. Journal of Management Science and Engineering, 2021, 24(1): 109-126.
|
10 |
Gu S H, Kelly B, Xiu D C. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021, 222(1, Part B): 429-450.
|
11 |
Fama E F, French K R. International tests of a five-factor asset pricing model[J]. Journal of Financial Economics, 2017, 123(3): 441-463.
|
12 |
Green J, Hand J R M, Zhang X F. The Characteristics that provide independent information about average U.S. monthly stock returns[J]. The Review of Financial Studies, 2017, 30(12): 4389-4436.
|
13 |
Fama E F, French K R. Common risk factors in the returns on stocks and bonds[J]. Journal of Financial Economics, 1993, 33(1): 3-56.
|
14 |
Nagel S, Singleton K J. Estimation and evaluation of conditional asset pricing models[J]. The Journal of Finance, 2011, 66(3): 873-909.
|
15 |
Hansen L P, Jagannathan R. Assessing specification errors in stochastic discount factor models[J]. The Journal of Finance, 1997, 52(2): 557-590.
|
16 |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680.
|
17 |
Chen L Y, Pelger M, Zhu J. Deep learning in asset pricing[J].Management Science, 2024,70(2):714-750.
|
18 |
Ghysels E, Santa-Clara P, Valkanov R. Predicting volatility: Getting the most out of return data sampled at different frequencies[J]. Journal of Econometrics, 2006, 131(1): 59-95.
|
19 |
许启发, 卓杏轩, 蒋翠侠. 反向有约束混频数据模型的市场化利率预测[J]. 管理科学学报, 2019, 22(10): 55-71.
|
|
Xu Q F, Zhuo X X, Jiang C X. Predicting market interest rates via reverse restricted MIDAS model[J]. Journal of Management Science and Engineering, 2019, 22(10): 55-71.
|
20 |
谭德凯, 田利辉.黄金是股票市场的“避险天堂”吗?——基于动态条件相关混频数据抽样模型[J]. 中国管理科学, 2022, 30(10): 1-12.
|
|
Tan D K, Tian L H. Is gold a safe haven of the stock market?Based on dynamic conditional correlation mixed data sampling model[J]. Chinese Journal of Management Science, 2022, 30(10): 1-12.
|
21 |
夏婷, 闻岳春. 经济不确定性是股市波动的因子吗?——基于GARCH-MIDAS模型的分析[J]. 中国管理科学, 2018, 26(12): 1-11.
|
|
Xia T, Wen Y C. Does economic uncertainty matter for stock market volatility? An analysis based on GARCH-MIDAS[J]. Chinese Journal of Management Science, 2018, 26(12): 1-11.
|
22 |
Yang C P, Zhang R G. Does mixed-frequency investor sentiment impact stock returns? Based on the empirical study of MIDAS regression model[J]. Applied Economics, 2014, 46(9): 966-972.
|
23 |
Leippold M, Wang Q, Zhou W Y. Machine learning in the Chinese stock market[J]. Journal of Financial Economics, 2022, 145(2): 64-82.
|
24 |
张鹏, 党世力, 黄梅雨. 基于机器学习预测股票收益率的两步骤M-SV投资组合优化[J].中国管理科学, 2022,31(12):96-106.
|
|
Zhang P, Dang S L, Huang M Y. Two-stage mean semi-variance portfolio optimization with stock return prediction using machine learning[J]. Chinese Journal of Management Science, 2022,31(12):96-106.
|