Chinese Journal of Management Science ›› 2021, Vol. 29 ›› Issue (12): 227-236.doi: 10.16381/j.cnki.issn1003-207x.2021.1169
• Articles • Previous Articles Next Articles
FENG Xiao-bin1, TANG Yi-bin1, WU Zeng-yuan1, XU Ming-jiang2
Received:
2021-06-10
Revised:
2021-10-14
Online:
2021-12-20
Published:
2021-12-28
Contact:
汤易兵
E-mail:tony@cjlu.edu.cn
CLC Number:
FENG Xiao-bin, TANG Yi-bin, WU Zeng-yuan, XU Ming-jiang. Process Manufacturing Product Quality Status Monitoring Based on SRFML-Lift[J]. Chinese Journal of Management Science, 2021, 29(12): 227-236.
[1] 桂卫华,曾朝晖,陈晓方,等.知识驱动的流程工业智能制造[J].中国科学:信息科学,2020,50(9):1345-1360.Gui Weihua, Zeng Zhaohui,Chen Xiaofang,et al. Knowledge-driven process industry smart manufacturing[J].Scientia Sinica(Informationis),20 20,50(9):1345-1360. [2] Ge Zhiqiang, Song Zhihuan, et al. Data mining and analytics in the process industry: The role of machine learning[J]. Ieee Access, 2017, 5: 20590-20616. [3] 耿修林.多元质量特性预报:MULTIVARIATE回归分析的应用[J].数理统计与管理,2008(5):807-814.Geng Xiulin.Multivariate Regression prediction analysis of multiple quality characteristics [J].Journal of Applied Statistics and Management,2008(05):807-814. [4] 方喜峰,赵良才,吴洪涛.基于数据挖掘的产品质量控制建模方法[J].机械工程学报,2005(11):24-29.Fang Xifeng, Zhao Liangcai, Wu Hongtao. Modeling method of product quality control based on data mining [J].Journal of Mechanical Engineering,2005(11):24-29. [5] 朱慧明,黄超,虞克明,等.基于自回归移动平均过程的贝叶斯质量控制方法研究[J].湖南大学学报(自然科学版),2010,37(5):83-87.Zhu Huiming,Huang Chao, Yu Keming,et al. Bayesian quality control for autoreg ressive Moving-average processes[J].Journal of Hunan University(Natural Sciences),2010,37(5):83-87. [6] 赵丽,程铁信,莫莹,等.基于C5.0改进算法的焊接工艺参数选择决策树数据挖掘模型及其应用[J].中国管理科学,2016,24(S1):177-182.Zhao Li, Cheng Tiexin,Mo Ying,et al.T he decision tree data minging model for welding parameters selection based on C5.0 improved algorithm and its application[J].Chinese Journal of Management Science,2016,24(S1):177-182. [7] 董海,高秀秀,魏铭琦.基于深度学习的完全填充型熔融沉积成型零件质量预测方法[J/OL].计算机集成制造系统:1-14[2021-10-15].http://kns.cnki.net/kcms/detail/11.5946.TP.20210726.0744.002.html.Dong Hai,Gao Xiuxiu,Wei Mingqi.Quality prediction method of fully filled fused deposition molding parts based on deep learning[J/OL].Computer Integrated Manufacturing Systems:1-14[2021-10-15].http://kns.cnki.net/kcms/detail/11.5946.TP.20210726.0744.002.html. [8] 夏丽莎,杨玉英,方华京.基于EasyEnsemble的化工过程故障诊断性能改进[J].控制理论与应用,2017,34(1):49-53.Xia Lisha,Yang Yuying,Fang Huajing.Fault diagnosis performance improvement for chemical process based on EasyEnsemble method[J].Control Theory & Applications,2017,34(1):49-53. [9] 邵景峰,贺兴时,王进富,白晓波,雷霞,刘聪颖.基于数据的纺纱质量异常行为预警四步法[J].中国管理科学,2015,23(S1):275-284.Shao Jingfeng, He Xingshi, Wang Jinfu, Bai Xiaobo,Lei Xia,Liu Congyin.A Four-step method for abnormal behavior waring of spining quality based on data [J].Chinese Journal of Management Science,2015,23(S1):275-284. [10] Lu Zhiyuan, Wang Meiqing, Dai Wei, et al. In-process complex machining condition monitoring based on deep forest and process information fusion[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 1953-1966. [11] Gao Chuanhou,Ling Jian, Luo Shihua. Modeling of the thermal state change of blast furnace hearth with support vector machines[J]. IEEE Transactions on Industrial Electronics, 2011, 59(2): 1134-1145. [12] 程进,王坚.数据驱动的流程制造工艺参数匹配方法[J].计算机集成制造系统,2017,23(11):2361-2370.Cheng Jin,Wang Jian.Data-driven matching method for processing parameters in process manufacturing [J].Computer Integrated Manufacturing Systems,2017,23(11):2361-2370. [13] 吴增源,周彩虹,刘畅,郑素丽.基于不平衡大数据的CS-AdaBoost-DT模型在家电产品质检中的应用[J].工业工程与管理,2020,25(5):42-49.Wu Zengyuan,Zhou Caihong,Liu Chang, et al. Home appliance quality inspection based on CS-AdaBoost-DT model with imbalanced big data[J].Industrial Engineering and Management,2020,25(05):42-49. [14] Wang Tianteng, Wang Xuping, Ma Ruize, et al. Random forest-bayesian optimization for product quality prediction with large-scale dimensions in process industrial cyber-physical systems[J]. IEEE Internet of Things Journal, 2020, 7(9): 8641-8653. [15] 谢荣琦,何桢,何曙光.基于ReliefF和k-modes聚类的复杂产品关键质量特性识别[J].工业工程与管理,2014,19(1):30-34.Xie Rongqi,He Zhen,He Shuguang.The identification of critical-to-quality characteristics of complex products based on relief and k-modes attribute clustering algorithm[J].Industrial Engineering and Management,2014,19(1):30-34. [16] 朱波,刘飞,李顺江.基于优化有向无环图支持向量机的多变量过程均值异常识别[J].计算机集成制造系统,2013,19(3):559-568.Zhu Bo,Liu Fei,Li Shunjiang.Mean abnormality identification in multivariate process based on optimized directed acyclic graph support vector machine[J].Computer Integrated Manufacturing Systems,2013,19(3):559-568. [17] 赵哲耘,刘玉敏,王宁.基于改进卷积神经网络的动态过程质量异常模式识别[J].工业工程与管理,2021,26(4):69-76.Zhao Zheyun,Liu Yumin, Wang Ning. Dynamic process quality abnormal patterns recognition method based on improved convolutional neural network[J].Industrial Engineering and Management,2021,26(4):69-76. [18] 李诒靖,郭海湘,李亚楠,等.一种基于Boosting的集成学习算法在不均衡数据中的分类[J].系统工程理论与实践,2016,36(1):189-199.Li Yijing,Guo Haixiang,Li Yanan,et al. A boosting based ensemble learning algorithm in imbalanced data classification[J].Systems Engineering-Theory & Practice,2016,36(1):189-199. [19] Zhang Minling, Wu Lei. Lift: Multi-label learning with label-specific features[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 37(1): 107-120. [20] 张晶,王亦斌,方帅.多标签高光谱图像地物分类[J].中国图象图形学报,2020,25(3):568-578.Zhang Jin,Wang Yibin,Fang Shuai.Multi-label hyperspectral image classification[J].Journal of Image and Graphic,2020,25(3):568-578. [21] Zhang Qi, Li Shan, Yu Bin, et al. DMLDA-LocLIFT: Identification of multi-label protein subcellular localization using DMLDA dimensionality reduction and LIFT classifier[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 206: 104148. [22] Spolar N, Cherman E A, Monard M C, et al. ReliefF for multi-label feature selection[C]//2013 Brazilian Conference on Intelligent Systems. IEEE, 2013: 6-11. [23] Kononenko I. Estimating attributes: Analysis and extensions of RELIEF[C]//European conference on machine learning. Springer, Berlin, Heidelberg, 1994: 171-182. [24] 姚二亮,李德玉.多标记特征选择算法的综述Review on Multi-label Feature Selection[J].郑州大学学报(理学版),2020,52(4):16-27.Yao Erliang,Li Deyu.Review on multi-label feature selection[J].Journal of Zhengzhou University(Natural Science Edition),2020,52(04):16-27. [25] Maldonado S, Weber R, Famili F. Feature selection for high-dimensional class-imbalanced data sets using support vector machines[J]. Information sciences, 2014, 286: 228-246. [26] Charte F, Rivera A J, del Jesus M J, et al. MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation[J]. Knowledge-Based Systems, 2015, 89: 385-397. [27] Su Yingying ,Han Lianjuan,Wang Jianan, et al. Quantum-behaved RS-PSO-LSSVM method for quality prediction in parts production processes[J]. Concurrency and Computation: Practice and Experience, 2019: e5522. [28] Hernández G, León R, Urtubia A. Detection of abnormal processes of wine fermentation by support vector machines[J]. Cluster Computing, 2016, 19(3): 1219-1225. [29] Zhang Minling, Zhou Zhihua. ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038-2048. [30] Chen Weijie, Shao Yuanhai, Li Chunna, et al. MLTSVM: a novel twin support vector machine to multi-label learning[J]. Pattern Recognition, 2016, 52: 61-74. [31] Benites F, Sapozhnikova E. Haram: a hierarchical aram neural network for large-scale text classification[C]//2015 IEEE international conference on data mining workshop (ICDMW). IEEE, 2015: 847-854. [32] 洪永淼,汪寿阳.数学、模型与经济思想[J].管理世界,2020,36(10):15-27.Hong Yongmiao,Wang Shouyang.Mathematics, model and economic thought[J].Management World,2020,36(10):15-27. [33] 董路安,叶鑫.基于改进教学式方法的可解释信用风险评价模型构建[J].中国管理科学,2020,28(9):45-53.Dong Luan,Ye Xin. Interpretable credit risk assessment modeling based on improved pedagoical method [J].Chinese Journal of Management Science,2020,28(9):45-53. [34] 吴俊杰,刘冠男,王静远,等.数据智能:趋势与挑战[J].系统工程理论与实践,2020,40(8):2116-2149.Wu Junjie,Liu Guannan,Wang Jingyuan,et al.Data intelligence:Trends and challenges [J].Systems Engineering-Theory & Practice,2020,40(8):2116-2149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|