[1] Berman O, Gavious A. Location of terror response facilities:A game between state and terrorist[J]. European Journal of Operational Research, 2007, 177(2):1113-1133. [2] 柴瑞瑞, 孙康, 陈静锋, 等. 连续恐怖袭击下反恐设施选址与资源调度优化模型及其应用[J]. 系统工程理论与实践, 2016, 36(2):464-472. [3] Meng Lingpeng, Kang Qi, Han Chuanfeng, et al. Determining the optimal location of terror response facilities under the risk of disruption[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 99:1-11. [4] Hamza G L, Hua K A, Peng R. Leveraging e-transportation in real-time traffic evacuation management[J]. Electronic Commerce Research & Applications, 2008, 6(4):413-424. [5] 付举磊,肖进,孙多勇, 等. 基于社会网络的恐怖活动时空特征分析[J]. 系统工程理论与实践, 2015, 35(9):2324-2332. [6] Qi X, Duval R D, Christensen K. Terrorist networks, network energy and node removal:A new measure of centrality based on laplacian energy[J]. Social Networking, 2013, 2(1):19-31. [7] Zhuang J, Bier V M. Balancing terrorism and natural disasters:Defensive strategy with endogenous attacker effort[J]. Operations Research, 2007, 55(5):976-991. [8] Shan Xiaojun,Zhuang Jun. Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender-attacker game[J]. European Journal of Operational Research, 2013, 228(1):262-272. [9] 刘忠轶,翟昕,高岩, 等. 考虑空间因素的反恐防御竞争分析[J]. 系统工程理论与实践, 2016, 36(1):136-144. [10] 刘德海,周婷婷. 基于认知差异的恐怖主义袭击误对策分析[J]. 系统工程理论与实践, 2015, 35(10):2646-2656. [11] 刘德海,鲍雪言,王谢宁. 恐怖袭击事件中悲观/乐观情绪如何影响博弈均衡结果[J]. 中国管理科学, 2017, 25(10):80-88. [12] 刘德海,柴瑞瑞,韩呈军. 基于心智模型的恐怖主义袭击扩展式演化博弈分析[J]. 中国管理科学, 2018, 26(2):71-78. [13] 卫静, 刘德海. 特殊时期地铁安检强化措施的优化模型和社会福利分析[J]. 中国管理科学, 2017, 25(6):188-196. [14] 柴瑞瑞,刘德海,陈静锋. 恐怖分子跨国潜入的反恐安检资源配置研究[J]. 系统工程学报, 2017, 32(3):335-345. [15] Wood R K. Deterministic network interdiction[J]. Mathematical & Computer Model, 1993, 17(17):1-18. [16] Israeli E, Wood R K. Shortest-path network interdiction[J]. Networks, 2002, 40(2):97-111. [17] Pan F, Morton D P. Minimizing a stochastic maximum-reliability Path[J]. Networks, 2010, 52(52):111-119. [18] Ghare P M, Montgomery D C, Turner W C. Optimal interdiction policy for a flow network[J]. Naval Research Logistics Quarterly, 1971, 18(1):37-45. [19] Assimakopoulos N. A network interdiction model for hospital infection control[J]. Computers in Biology & Medicine,1987,17(6):413. [20] Claudio M R, Marquez J. A bi-objective approach for shortest-path network interdiction[J]. Computers & Industrial Engineering, 2010, 59(2):232-240. [21] Cormican K J, Morton D P, Wood R K. Stochastic network interdiction[J]. Operations Research, 1998, 46(2):184-197. [22] Bertsimas D, Nasrabadi E, Orlin J B. On the power of randomization in network interdiction[J]. Operations Research Letters, 2016, 44(1):114-120. [23] Lei Xiao, Shen Siqian, Song Yongjia. Stochastic maximum flow interdiction problems under heterogeneous risk preferences[J]. Computers & Operations Research, 2017, 90(1):97-109. [24] Gutin E, Kuhn D, Wiesemann W. Interdiction games on markovian PERT networks[J]. Management Science, 2015, 61(5):999-1017. [25] Sefair J A, Smith J C. Dynamic shortest-path interdiction[J]. Networks, 2016, 68(4):315-330. [26] Kheirkhah A, Navidi H R, Bidgoli M M. A bi-level network interdiction model for solving the hazmat routing problem[J]. International Journal of Production Research, 2016, 54(2):459-471. [27] Bard, J F. Some properties of the bilevel programming problem[J]. Journal of Optimization Theory and Applications, 1991, 68(2):371-378. [28] Willis H H. Guiding resource allocations based on terrorism risk[J]. Risk Analysis, 2007, 27(3):597-606. |