Chinese Journal of Management Science ›› 2021, Vol. 29 ›› Issue (8): 13-23.doi: 10.16381/j.cnki.issn1003-207x.2019.1189
• Articles • Previous Articles Next Articles
WU Xin-yu1, LI Xin-dan2, MA Chao-qun3
Received:
2019-08-12
Revised:
2019-12-04
Online:
2021-08-20
Published:
2021-08-13
CLC Number:
WU Xin-yu, LI Xin-dan, MA Chao-qun. Measuring VaR Based on the Information Content of Option and High-frequency Data[J]. Chinese Journal of Management Science, 2021, 29(8): 13-23.
[1] So M, Yu P. Empirical analysis of GARCH models in value at risk estimation[J]. Journal of International Financial Markets, Institutions and Money, 2006, 16(2):180-197. [2] 肖智, 傅肖肖, 钟波. 基于EVT-BM-FIGARCH的动态VaR风险测度[J]. 中国管理科学, 2008, 16(4):18-23. Xiao Zhi, Fu Xiaoxiao, Zhong Bo. Dynamic VaR risk measures based on EVT-BM-FIGARCH[J]. Chinese Journal of Management Science, 2008, 16(4):18-23. [3] 林宇, 卫贵武, 魏宇, 等. 基于Skew-FIAPARCH的金融市场动态风险VaR测度研究[J]. 中国管理科学, 2009, 17(6):17-24. Lin Yu, Wei Guiwu, Wei Yu, et al. Study on dynamic risk measure of financial markets based on skew-t-FIAPARCH model[J]. Chinese Journal of Management Science, 2009, 17(6):17-24. [4] 周孝华, 董耀武, 姜婷. 基于EVT-POT-SV-GED模型的极值风险度量[J]. 系统工程学报, 2012, 27(2):152-159. Zhou Xiaohua, Dong Yaowu, Jiang Ting. Extreme risk measurement based on EVT-POT-SV-GED model[J]. Journal of Systems Engineering,2012,27(2):152-159. [5] 吴鑫育, 马宗刚, 汪寿阳, 等. 基于SV-SGED模型的动态VaR测度研究[J]. 中国管理科学, 2013, 21(6):1-10. Wu Xinyu, Ma Zonggang, Wang Shouyang, et al. Study on dynamic VaR measures based on SV-SGED model[J]. Chinese Journal of Management Science, 2013, 21(6):1-10. [6] 周孝华, 张保帅. 基于SV-GED模型的极值风险度量研究[J]. 管理工程学报, 2014, 28(1):171-178. Zhou Xiaohua, Zhang Baoshuai. A research based on SV-GED model of extreme risk measure[J]. Journal of Industrial Engineering and Engineering Management, 2014, 28(1):171-178. [7] Kiesel R, Rahe F. Option pricing under time-varying risk-aversion with applications to risk forecasting[J]. Journal of Banking & Finance, 2017, 76:120-138. [8] Pati P C, Barai P, Rajib P. Forecasting stock market volatility and information content of implied volatility index[J]. Applied Economics, 2018, 50(23):2552-2568. [9] Chun D, Cho H, Ryu D. Forecasting the KOSPI200 spot volatility using various volatility measures[J]. Physica A, 2019, 514:156-166. [10] Qiao Gaoxiu, Teng Yuxin, Li Weiping, et al. Improving volatility forecasting based on Chinese volatility index information:Evidence from CSI 300 index and futures markets[J]. North American Journal of Economics and Finance, 2019, 49:133-151. [11] Pan Zhiyuan, Wang Yudong, Liu Li, et al. Improving volatility prediction and option valuation using VIX information:A volatility spillover GARCH model[J]. Journal of Futures Market, 2019, 39(6):744-776. [12] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [13] Hull J C, White A D. The pricing of options on asset with stochastic volatilities[J]. Journal of Finance, 1987, 42(2):281-300. [14] Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies, 1993, 6(2):327-343. [15] Christoffersen P, Heston S L, Jacobs K. The shape and term structure of the index option smirk:Why multifactor stochastic volatility models work so well[J]. Management Science, 2009, 55(12):1914-1932. [16] Zhou Guofu, Zhu Yingzi. Volatility trading:What is the role of the long-run volatility component?[J]. Journal of Financial and Quantitative Analysis, 2012, 47(2):273-307. [17] Guo Biao, Han Qian, Zhao Bin. The Nelson-Siegel model of the term structure of option implied volatility and volatility components[J]. Journal of Futures Markets, 2014, 34(8):788-806. [18] Bardgett C, Gourier E, Leippold M. Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets[R]. Journal of Financial Economics, 2019, 131(3):593-618. [19] Branger N, Kraftschika A, Völkert C. The fine structure of variance:Pricing VIX derivatives in consistent and log-VIX models[R].Working Paper, SSRN, 2016. [20] Amengual D, Xiu Dacheng. Resolution of policy uncertainty and sudden declines in volatility[J]. Journal of Econometrics, 2018, 203(2):297-315. [21] Campbell J Y, Giglio S, Polk C, et al. An intertemporal CAPM with stochastic volatility[J]. Journal of Financial Economics, 2018, 128(2):207-233. [22] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics, 2001, 61(1):43-76. [23] Takahashi M, Omori Y, Watanabe T. Estimating stochastic volatility models using daily returns and realized volatility simultaneously[J]. Computational Statistics & Data Analysis, 2009, 53(6):2404-2426. [24] Koopman S J, Scharth M. The analysis of stochastic volatility in the presence of daily realised measures[J]. Journal of Financial Econometrics, 2013, 11(1):76-115. [25] Zheng Tingguo, Song Tao. A realized stochastic volatility model with Box-Cox transformation[J]. Journal of Business & Economic Statistics, 2014, 32(4):593-605. [26] Takahashi M, Watanabe T, Omori Y. Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution[J]. International Journal of Forecasting, 2016, 32(2):437-457. [27] Asai M, Chang C, Mcaleer M. Realized stochastic volatility with general asymmetry and long memory[J]. Journal of Econometrics, 2017, 199:202-212. [28] 吴鑫育,李心丹,马超群.门限已实现随机波动率模型及其实证研究[J].中国管理科学,2017,25(3):10-19. Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science, 2017, 25(3):10-19. [29] 吴鑫育, 周海林. 基于已实现SV模型的动态VaR测度研究[J]. 管理工程学报, 2018, 32(2), 144-150. Wu Xinyu, Zhou Hailin. Study on dynamic VaR measures based on realized SV model[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32(2):144-150. [30] 吴鑫育, 李心丹, 马超群. 双因子非对称已实现SV模型及其实证研究[J]. 中国管理科学, 2018, 26(2):1-13. Wu Xinyu, Li Xindan, Ma Chaoqun. The realized SV model of two-factor asymmetry and its empirical research[J]. Chinese Journal of Management Science, 2018, 26(2):1-13. [31] 吴鑫育, 李心丹, 马超群. 混合正态双因子已实现SV模型及其实证研究[J]. 管理科学, 2019, 32(2):148-160. Wu Xinyu, Li Xindan, Ma Chaoqun. Two-factor realized SV model with mixture of normals and its empirical research[J]. Journal of Management Science, 2019, 32(2):148-160. [32] Hansen P R, Huang Zhuo, Shek H H. Realized GARCH:A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27:877-906. [33] Hansen P R, Huang Zhuo. Exponential GARCH modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2):269-287. [34] 唐勇, 刘微. 加权已实现极差四次幂变差分析及其应用[J]. 系统工程理论与实践, 2013, 33(11):2766-2775. Tang Yong, Liu Wei. Analysis of weighted realized range-based quadpower variation and its application[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2766-2775. [35] 王天一, 赵晓军, 黄卓. 利用高频数据预测沪深300指数波动率——基于Realized GARCH模型的实证研究[J]. 世界经济文汇, 2014(5):17-30. Wang Tianyi, Zhao Xiaojun, Huang Zhuo. Forecasting volatility of the CSI 300 index with high frequency data-An empirical study based on the realized GARCH Model[J].World Economic Papers,2014(5):17-30. [36] 王天一, 黄卓. Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报, 2015, 18(5):79-86. Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China, 2015, 18(5):79-86. [37] 黄友珀, 唐振鹏, 周熙雯. 基于偏分布realized GARCH模型的尾部风险估计[J]. 系统工程理论与实践, 2015, 35(9):2200-2208. Huang Youpo, Tang Zhenpeng, Zhou Xiwen. Estimation of tail risk based on realized GARCH model with skew-t distribution[J]. Systems Engineering-Theory & Practice, 2015, 35(9):2200-2208. [38] 黄友珀, 唐振鹏, 唐勇. 基于藤copula-已实现GARCH的组合收益分位数预测[J]. 系统工程学报, 2016, 31(1):45-54. Huang Youpo, Tang Zhenpeng, Tang Yong. Portfolio quantile forecasts based on vine copula and realized GARCH[J]. Journal of Systems Engineering, 2016, 31(1):45-54. [39] Huang Zhuo, Liu Hao, Wang Tianyi. Modeling long memory volatility using realized measures of volatility:A realized HAR GARCH model[J]. Economic Modeling, 2016, 52(1):812-821. [40] Wu Xinyu, Xie Haibin. A realized EGARCH-MIDAS model with higher moments[J]. Finance Research Letters, 2019, DOI:10.1016/j.frl.2019.101392. [41] Wu Xinyu, Xia Chaoxiong, Zhang Huanming. Forecasting VaR using realized EGARCH model with skewness and kurtosis[J]. Finance Research Letters, 2019, DOI:10.1016/j.frl.2019.01.002. [42] Christoffersen P, Jacobs K, Mimouni K. Volatility dynamics for the S&P 500:Evidence from realized volatility, daily returns, and option prices[J]. Review of Financial Studies, 2010, 23(8):3141-3189. [43] Kaeck A, Alexander C. Volatility dynamics for the S&P 500:Further evidence from non-affine, multi-factor jump diffusions[J]. Journal of Banking & Finance, 2012, 36(11):3110-3121. [44] Yang Hanxue, Kanniainen J. Jump and volatility dynamics for the S&P 500:Evidence for infinite-activity jumps with non-affine volatility dynamics from stock and option markets[J]. Reveiw of Finance, 2017, 21(2):811-844. [45] Wu Xinyu, Zhou Hailin, Wang Shouyang. Estimation of market prices of risks in the G.A.R.C.H. diffusion model[J]. Economic Research-Ekonomska Istra?ivanja, 2018, 31(1):15-36. [46] 吴鑫育, 赵凯, 李心丹, 等. 时变风险厌恶下的期权定价——基于上证50ETF期权的实证研究[J]. 中国管理科学, 2019, 27(11):11-22. Wu Xinyu, Zhao Kai, Li Xindan, et al. Option pricing under time-varying risk aversion:An empirical study based on SSE 50ETF options[J]. Chinese Journal of Management Science, 2019, 27(11):11-22. [47] Gordon N J, Salmond D J, Smith A FM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993, 140(2):107-113. [48] Malik S, Pitt M K. Particle filters for continuous likelihood evaluation and maximization[J]. Journal of Econometrics, 2011, 165:190-209. [49] Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2):73-84. |
[1] | ZHEN Lu, TAN Zhe-yi, XIAO Li-yang, MA Cheng-le. Research on Parcel Sorting Optimization Model and Algorithm for Double-layer Automatic Sorting Systems [J]. Chinese Journal of Management Science, 2021, 29(7): 171-180. |
[2] | QI Yue, LIAO Ke-zhi. Research on the Diversification Benefits of Commodity Futures under the Background of Commodity Financialization [J]. Chinese Journal of Management Science, 2021, 29(6): 10-22. |
[3] | LIU Ying, MU Yin-ping. Optimal Ordering Policy and Pricing Strategy for Holding Supply Chain Based on Bargaining Model [J]. Chinese Journal of Management Science, 2021, 29(6): 160-167. |
[4] | MO Dong-xu, ZHENG Tian-dan. Research on Portfolio Optimization Based on Complex Network [J]. Chinese Journal of Management Science, 2021, 29(5): 25-33. |
[5] | HE Chao-lin, TU Bei, WANG Peng. The Effectiveness of Dynamic Mean-variance Portfolio: An Aspect of Time-varying Risk Tolerance [J]. Chinese Journal of Management Science, 2021, 29(1): 1-11. |
[6] | Yuan Hui-ling, XU Lu, Zhou Yong. Leverage Effect Combining Trading Information with Stochastic Microstructure Noise [J]. Chinese Journal of Management Science, 2020, 28(9): 12-22. |
[7] | WANG Xian-dong, HE Jian-min. Pricing Asian Options under Uncertain Environment with Fuzziness and Randomness Considering Decision Maker's Subjective Judgment [J]. Chinese Journal of Management Science, 2020, 28(9): 33-44. |
[8] | SANG Sheng-ju, ZHANG Qiang. Optimal Decisions in a Green Supply Chain Based on Uncertainty Theory [J]. Chinese Journal of Management Science, 2020, 28(9): 127-136. |
[9] | GUO Jie. Online Tourism Supply Chain Network Equilibrium Model with the Transaction Risk Investment [J]. Chinese Journal of Management Science, 2020, 28(6): 137-145. |
[10] | HU Chun-hua, ZHAO Hui, TONG Xiao-qin, REN Jian. Research on the Impact of Intelligent Recommendation System on Consumer Online Shopping [J]. Chinese Journal of Management Science, 2020, 28(6): 158-170. |
[11] | ZHANG Ke, ZHONG Qiu-ping, QU Pin-pin, YIN Yao, ZUO Yuan. Grey Forecasting Model of Rural Water Environment Quality Based on Online Searching Information [J]. Chinese Journal of Management Science, 2020, 28(6): 222-230. |
[12] | QU Hui, ZHANG Yi. The Study of High-dimensional Volatility Estimators and Forecasting Models based on Volatility Timing Performance [J]. Chinese Journal of Management Science, 2020, 28(5): 62-70. |
[13] | XIONG Tao, BAO Yu-kun. Soybean Future Prices Forecasting based on Dynamic Model Averaging [J]. Chinese Journal of Management Science, 2020, 28(5): 79-88. |
[14] | XU Hai-feng, WANG Xiao-dong. Can Modern Service Industry Promote Urbanization?——An PVAR Analysis Based on the Perspective of City-industry Integration [J]. Chinese Journal of Management Science, 2020, 28(4): 195-206. |
[15] | YANG Chang-hui, SHAO Zhen, LIU Chen, FU Chao. A Hybrid Modeling Framework and Its Application for Exchange Traded Fund Options Pricing [J]. Chinese Journal of Management Science, 2020, 28(12): 44-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|