[1] So M, Yu P. Empirical analysis of GARCH models in value at risk estimation[J]. Journal of International Financial Markets, Institutions and Money, 2006, 16(2):180-197.
[2] 肖智, 傅肖肖, 钟波. 基于EVT-BM-FIGARCH的动态VaR风险测度[J]. 中国管理科学, 2008, 16(4):18-23. Xiao Zhi, Fu Xiaoxiao, Zhong Bo. Dynamic VaR risk measures based on EVT-BM-FIGARCH[J]. Chinese Journal of Management Science, 2008, 16(4):18-23.
[3] 林宇, 卫贵武, 魏宇, 等. 基于Skew-FIAPARCH的金融市场动态风险VaR测度研究[J]. 中国管理科学, 2009, 17(6):17-24. Lin Yu, Wei Guiwu, Wei Yu, et al. Study on dynamic risk measure of financial markets based on skew-t-FIAPARCH model[J]. Chinese Journal of Management Science, 2009, 17(6):17-24.
[4] 周孝华, 董耀武, 姜婷. 基于EVT-POT-SV-GED模型的极值风险度量[J]. 系统工程学报, 2012, 27(2):152-159. Zhou Xiaohua, Dong Yaowu, Jiang Ting. Extreme risk measurement based on EVT-POT-SV-GED model[J]. Journal of Systems Engineering,2012,27(2):152-159.
[5] 吴鑫育, 马宗刚, 汪寿阳, 等. 基于SV-SGED模型的动态VaR测度研究[J]. 中国管理科学, 2013, 21(6):1-10. Wu Xinyu, Ma Zonggang, Wang Shouyang, et al. Study on dynamic VaR measures based on SV-SGED model[J]. Chinese Journal of Management Science, 2013, 21(6):1-10.
[6] 周孝华, 张保帅. 基于SV-GED模型的极值风险度量研究[J]. 管理工程学报, 2014, 28(1):171-178. Zhou Xiaohua, Zhang Baoshuai. A research based on SV-GED model of extreme risk measure[J]. Journal of Industrial Engineering and Engineering Management, 2014, 28(1):171-178.
[7] Kiesel R, Rahe F. Option pricing under time-varying risk-aversion with applications to risk forecasting[J]. Journal of Banking & Finance, 2017, 76:120-138.
[8] Pati P C, Barai P, Rajib P. Forecasting stock market volatility and information content of implied volatility index[J]. Applied Economics, 2018, 50(23):2552-2568.
[9] Chun D, Cho H, Ryu D. Forecasting the KOSPI200 spot volatility using various volatility measures[J]. Physica A, 2019, 514:156-166.
[10] Qiao Gaoxiu, Teng Yuxin, Li Weiping, et al. Improving volatility forecasting based on Chinese volatility index information:Evidence from CSI 300 index and futures markets[J]. North American Journal of Economics and Finance, 2019, 49:133-151.
[11] Pan Zhiyuan, Wang Yudong, Liu Li, et al. Improving volatility prediction and option valuation using VIX information:A volatility spillover GARCH model[J]. Journal of Futures Market, 2019, 39(6):744-776.
[12] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
[13] Hull J C, White A D. The pricing of options on asset with stochastic volatilities[J]. Journal of Finance, 1987, 42(2):281-300.
[14] Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies, 1993, 6(2):327-343.
[15] Christoffersen P, Heston S L, Jacobs K. The shape and term structure of the index option smirk:Why multifactor stochastic volatility models work so well[J]. Management Science, 2009, 55(12):1914-1932.
[16] Zhou Guofu, Zhu Yingzi. Volatility trading:What is the role of the long-run volatility component?[J]. Journal of Financial and Quantitative Analysis, 2012, 47(2):273-307.
[17] Guo Biao, Han Qian, Zhao Bin. The Nelson-Siegel model of the term structure of option implied volatility and volatility components[J]. Journal of Futures Markets, 2014, 34(8):788-806.
[18] Bardgett C, Gourier E, Leippold M. Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets[R]. Journal of Financial Economics, 2019, 131(3):593-618.
[19] Branger N, Kraftschika A, Völkert C. The fine structure of variance:Pricing VIX derivatives in consistent and log-VIX models[R].Working Paper, SSRN, 2016.
[20] Amengual D, Xiu Dacheng. Resolution of policy uncertainty and sudden declines in volatility[J]. Journal of Econometrics, 2018, 203(2):297-315.
[21] Campbell J Y, Giglio S, Polk C, et al. An intertemporal CAPM with stochastic volatility[J]. Journal of Financial Economics, 2018, 128(2):207-233.
[22] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics, 2001, 61(1):43-76.
[23] Takahashi M, Omori Y, Watanabe T. Estimating stochastic volatility models using daily returns and realized volatility simultaneously[J]. Computational Statistics & Data Analysis, 2009, 53(6):2404-2426.
[24] Koopman S J, Scharth M. The analysis of stochastic volatility in the presence of daily realised measures[J]. Journal of Financial Econometrics, 2013, 11(1):76-115.
[25] Zheng Tingguo, Song Tao. A realized stochastic volatility model with Box-Cox transformation[J]. Journal of Business & Economic Statistics, 2014, 32(4):593-605.
[26] Takahashi M, Watanabe T, Omori Y. Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution[J]. International Journal of Forecasting, 2016, 32(2):437-457.
[27] Asai M, Chang C, Mcaleer M. Realized stochastic volatility with general asymmetry and long memory[J]. Journal of Econometrics, 2017, 199:202-212.
[28] 吴鑫育,李心丹,马超群.门限已实现随机波动率模型及其实证研究[J].中国管理科学,2017,25(3):10-19. Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science, 2017, 25(3):10-19.
[29] 吴鑫育, 周海林. 基于已实现SV模型的动态VaR测度研究[J]. 管理工程学报, 2018, 32(2), 144-150. Wu Xinyu, Zhou Hailin. Study on dynamic VaR measures based on realized SV model[J]. Journal of Industrial Engineering and Engineering Management, 2018, 32(2):144-150.
[30] 吴鑫育, 李心丹, 马超群. 双因子非对称已实现SV模型及其实证研究[J]. 中国管理科学, 2018, 26(2):1-13. Wu Xinyu, Li Xindan, Ma Chaoqun. The realized SV model of two-factor asymmetry and its empirical research[J]. Chinese Journal of Management Science, 2018, 26(2):1-13.
[31] 吴鑫育, 李心丹, 马超群. 混合正态双因子已实现SV模型及其实证研究[J]. 管理科学, 2019, 32(2):148-160. Wu Xinyu, Li Xindan, Ma Chaoqun. Two-factor realized SV model with mixture of normals and its empirical research[J]. Journal of Management Science, 2019, 32(2):148-160.
[32] Hansen P R, Huang Zhuo, Shek H H. Realized GARCH:A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27:877-906.
[33] Hansen P R, Huang Zhuo. Exponential GARCH modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2):269-287.
[34] 唐勇, 刘微. 加权已实现极差四次幂变差分析及其应用[J]. 系统工程理论与实践, 2013, 33(11):2766-2775. Tang Yong, Liu Wei. Analysis of weighted realized range-based quadpower variation and its application[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2766-2775.
[35] 王天一, 赵晓军, 黄卓. 利用高频数据预测沪深300指数波动率——基于Realized GARCH模型的实证研究[J]. 世界经济文汇, 2014(5):17-30. Wang Tianyi, Zhao Xiaojun, Huang Zhuo. Forecasting volatility of the CSI 300 index with high frequency data-An empirical study based on the realized GARCH Model[J].World Economic Papers,2014(5):17-30.
[36] 王天一, 黄卓. Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报, 2015, 18(5):79-86. Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China, 2015, 18(5):79-86.
[37] 黄友珀, 唐振鹏, 周熙雯. 基于偏分布realized GARCH模型的尾部风险估计[J]. 系统工程理论与实践, 2015, 35(9):2200-2208. Huang Youpo, Tang Zhenpeng, Zhou Xiwen. Estimation of tail risk based on realized GARCH model with skew-t distribution[J]. Systems Engineering-Theory & Practice, 2015, 35(9):2200-2208.
[38] 黄友珀, 唐振鹏, 唐勇. 基于藤copula-已实现GARCH的组合收益分位数预测[J]. 系统工程学报, 2016, 31(1):45-54. Huang Youpo, Tang Zhenpeng, Tang Yong. Portfolio quantile forecasts based on vine copula and realized GARCH[J]. Journal of Systems Engineering, 2016, 31(1):45-54.
[39] Huang Zhuo, Liu Hao, Wang Tianyi. Modeling long memory volatility using realized measures of volatility:A realized HAR GARCH model[J]. Economic Modeling, 2016, 52(1):812-821.
[40] Wu Xinyu, Xie Haibin. A realized EGARCH-MIDAS model with higher moments[J]. Finance Research Letters, 2019, DOI:10.1016/j.frl.2019.101392.
[41] Wu Xinyu, Xia Chaoxiong, Zhang Huanming. Forecasting VaR using realized EGARCH model with skewness and kurtosis[J]. Finance Research Letters, 2019, DOI:10.1016/j.frl.2019.01.002.
[42] Christoffersen P, Jacobs K, Mimouni K. Volatility dynamics for the S&P 500:Evidence from realized volatility, daily returns, and option prices[J]. Review of Financial Studies, 2010, 23(8):3141-3189.
[43] Kaeck A, Alexander C. Volatility dynamics for the S&P 500:Further evidence from non-affine, multi-factor jump diffusions[J]. Journal of Banking & Finance, 2012, 36(11):3110-3121.
[44] Yang Hanxue, Kanniainen J. Jump and volatility dynamics for the S&P 500:Evidence for infinite-activity jumps with non-affine volatility dynamics from stock and option markets[J]. Reveiw of Finance, 2017, 21(2):811-844.
[45] Wu Xinyu, Zhou Hailin, Wang Shouyang. Estimation of market prices of risks in the G.A.R.C.H. diffusion model[J]. Economic Research-Ekonomska Istra?ivanja, 2018, 31(1):15-36.
[46] 吴鑫育, 赵凯, 李心丹, 等. 时变风险厌恶下的期权定价——基于上证50ETF期权的实证研究[J]. 中国管理科学, 2019, 27(11):11-22. Wu Xinyu, Zhao Kai, Li Xindan, et al. Option pricing under time-varying risk aversion:An empirical study based on SSE 50ETF options[J]. Chinese Journal of Management Science, 2019, 27(11):11-22.
[47] Gordon N J, Salmond D J, Smith A FM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings-F, 1993, 140(2):107-113.
[48] Malik S, Pitt M K. Particle filters for continuous likelihood evaluation and maximization[J]. Journal of Econometrics, 2011, 165:190-209.
[49] Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2):73-84.