[1] 迟国泰, 张亚京, 石宝峰. 基于Probit回归的小企业债信评级模型及实证[J]. 管理科学学报, 2016, 19(6): 136-156.Chi Guotai, Zhang Yajing, Shi Baofeng. The debt rating for small enterprises based on probit regression[J]. Journal of Management Sciences in China, 2016, 19(6):136-156. [2] 高凌飚. 关于过程性评价的思考[J]. 课程.教材.教法, 2004(10): 15-19.Gao Lingbiao. Thinking into the Process Evaluation[J]. Curriculum, Teaching Material and Method, 2004(10): 15-19. [3] Wang Lu, Wu Chong. Dynamic imbalanced business credit evaluation based on Learn ++ with sliding time window and weight sampling and FCM with multiple kernels[J]. Information Sciences, 2020, 520: 305-323. [4] Herasymovych M, Mrka K, Lukason O. Using reinforcement learning to optimize the acceptance threshold of a credit scoring model[J]. Applied Soft Computing, 2019, DOI: 10.1016/j.asoc.2019.105697. [5] Junior L M, Nardini F M, Renso C, et al. A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems[J]. Expert Systems with Applications, 2020, DOI: 10.1016/j.eswa.2020.113351. [6] Jardin P D. Dynamics of firm financial evolution and bankruptcy prediction[J]. Expert Systems With Applications, 2017, 75: 25-43. [7] Sun Jie, Fujita Hamido, Chen Peng, et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble[J]. Knowledge-Based Systems, 2017, 120:4-14. [8] Bellotti T, Crook J. Forecasting and stress testing credit card default using dynamic models[J]. International Journal of Forecasting. 2013, 29(4): 563-574. [9] Sun Jie, Li Hui. Dynamic financial distress prediction using instance selection for the disposal of concept drift[J]. Expert Systems with Applications, 2011, 38(3): 2566-2576. [10] Sun Jie, He Kaiyu, Li Hui. SFFS-PC-NN optimized by genetic algorithm for dynamic prediction of financial distress with longitudinal data streams[J]. Knowledge-Based Systems, 2011, 24(7): 1013-1023. [11] 李鸿禧, 宋宇. 基于时间相依Cox回归的动态财务预警模型及实证[J]. 运筹与管理, 2020, 29(8): 177-185.Li Hongxi, Song Yu. Dynamic financial early warning model based on time-dependent cox regression and empirical study[J]. Operations Research and Management Science, 2020, 29(8): 177-185. [12] Ma Xiaojun, Sha Jinglan, Wang Dehua, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31: 24-39. [13] Jones S. Corporate bankruptcy prediction: a high dimensional analysis[J]. Review of Accounting Studies, 2017, 22: 1366-1422. [14] 史兴杰, 王赛旎, 李扬. 高维数据的稳健二分类方法[J]. 统计研究: 2020, 37(9): 95-105.Shi Xingjie, Wang Saini, Li Yang. Robust binary classification of high-dimensional data[J]. Statistical Research, 2020, 37(9): 95-105. [15] 宋瑞琪, 朱永忠, 王新军. 高维数据中变量选择研究[J]. 统计与决策, 2019, 35(2): 13-16.Song Ruiqi, Zhu Yongzhong, Wang Xinjun. Research on variable selection in high-dimensional data[J]. Statistics & Decision, 2019, 35(2): 13-16. [16] Zhou Jing, Li Wei, Wang Jiaxin, et al. Default prediction in P2P lending from high-dimensional data based on machine learning[J]. Physica A: Statistical Mechanics and its Applications, 2019, DOI:10.1016/j.physa.2019.122370. [17] 蒋翠清, 王睿雅, 丁勇. 融入软信息的P2P网络借贷违约预测方法[J]. 中国管理科学, 2017, 25(11): 12-21.Jiang Cuiqing, Wang Ruiya, Ding Yong. The default prediction combined with soft information online Peer-to-Peer lending[J]. Chinese Journal of Management Science, 2017, 25(11): 12-21. [18] 陈林, 谢彦妩, 李平等. 借款陈述文字中的违约信号——基于P2P网络借贷的实证研究[J]. 中国管理科学, 2019, 27(4): 37-47.Chen Lin, Xie Yanwu, Li Ping, et al. The signal of default risk from the description-text based on the empirical research of P2P lending[J]. Chinese Journal of Management Science, 2019, 27(4): 37-47. [19] Abdou H A, Mitra S, Fry J, et al. Would two-stage scoring models alleviate bank exposure to bad debt?[J]. Expert Systems With Applications, 2019,128: 1-13. [20] 赵志冲, 迟国泰. 基于似然比检验的工业小企业债信评级研究[J]. 中国管理科学, 2017, 25(1): 45-56.Zhao Zhichong, Chi Guotai. Facility rating of small industrial enterprises based on likelihood ratio test[J]. Chinese Journal of Management Science, 2017, 25(1): 45-56.
|