[1] |
许艳秋, 潘美芹. 层次分析法和支持向量机在个人信用评估中的应用[J].中国管理科学, 2016, 24(S1): 106-112.
|
|
Xu Y Q, Pan M Q. Application of analytic hierarchy process and support vector machine in personal credit evaluation[J]. Chinese Journal of Management Science, 2016, 24(S1): 106-112.
|
[2] |
王小燕, 张中艳, 马双鸽. 基于文本先验信息的贷款信用风险评估模型[J]. 中国管理科学, 2021, 29(5): 34-44.
|
|
Wang X Y, Zhang Z Y, Ma S G. A loan credit risk model incorporating text prior information[J]. Chinese Journal of Management Science, 2021, 29(5): 34-44.
|
[3] |
王小燕, 冮建伟, 徐龙滔. 基于CMCP和余弦间隔交叉熵的深度神经网络及其应用[J]. 数量经济技术经济研究, 2022, 39(10): 170-188.
|
|
Wang X Y, Gang J W, Xu L T. A deep neural network based on CMCP and cosine margin cross entropy and its application[J]. Journal of Quantitative & Technological Economics, 2022, 39(10): 170-188.
|
[4] |
杨莲, 石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75.
|
|
Yang L, Shi B F. Credit risk evaluation model and empirical research based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75.
|
[5] |
陆阳, 石宝峰, 迟国泰, 等. 基于违约损失逆序最小的非线性信用风险评价模型及实证[J]. 中国管理科学,2023,DOI:10.16381/j.cnki.issn1003-207x.2023.0192 .
|
|
Lu Y, Shi B F, Chi G T, et al. A novel nonlinear credit risk evaluation model and its empirical analysis based on minimizing the inversion number of loss given default sequence[J]. Chinese Journal of Management Science,2023,DOI:10.16381/j.cnki.issn1003-207x.2023.0192 .
|
[6] |
Ward G, Hastie T, Barry S, et al. Presence-only data and the EM algorithm[J]. Biometrics, 2009, 65(2): 554-563.
|
[7] |
Lancaster T, Imbens G. Case-control studies with contaminated controls[J]. Journal of Econometrics, 1996, 71(1-2): 145-160.
|
[8] |
Song H, Raskutti G. PUlasso: High-dimensional variable selection with presence-only data[J]. Journal of the American Statistical Association, 2020, 115(529): 334-347.
|
[9] |
Du Plessis M C, Niu G, Sugiyama M. Analysis of learning from positive and unlabeled data[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, December 8-13 , MIT Press, 2014: 703-711.
|
[10] |
Liu B, Dai Y, Li X, et al. Building text classifiers using positive and unlabeled examples[C]//Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL, USA, November 22, IEEE, 2003: 179-186.
|
[11] |
Elkan C, Noto K. Learning classifiers from only positive and unlabeled data[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas Nevada USA, August 24-27, ACM, 2008: 213-220.
|
[12] |
Blanchard G, Lee G, Scott C. Semi-supervised novelty detection[J]. The Journal of Machine Learning Research, 2010(11): 2973-3009.
|
[13] |
Xie M, Singh K, Strawderman W E. Confidence distributions and a unifying framework for meta-analysis[J]. Journal of the American Statistical Association, 2011, 106(493): 320-333.
|
[14] |
Liu J, Huang J, Ma S. Integrative analysis of cancer diagnosis studies with composite penalization[J]. Scandinavian Journal of Statistics, Theory and Applications, 2014, 41(1): 87-103.
|
[15] |
Huang Y, Zhang Q, Zhang S, et al. Promoting similarity of sparsity structures in integrative analysis with penalization[J]. Journal of the American Statistical Association, 2017, 112(517): 342-350.
|
[16] |
Yang X, Yan X, Huang J. High-dimensional integrative analysis with homogeneity and sparsity recovery[J]. Journal of Multivariate Analysis, 2019, 174: 104529.
|
[17] |
Tang L, Song P X K. Fused lasso approach in regression coefficients clustering - learning parameter heterogeneity in data integration[J]. Journal of Machine Learning Research, 2016, 17(113):1-23.
|
[18] |
Terada Y, Ogasawara I, Nakata K. Classification from only positive and unlabeled functional data[J]. The Annals of Applied Statistics, 2020, 14(4): 1724-1742.
|
[19] |
Divino F, Golini N, Jona Lasinio G, et al. Bayesian logistic regression for presence-only data[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(6): 1721-1736.
|
[20] |
Bekker J, Davis J. Estimating the class prior in positive and unlabeled data through decision tree induction[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, February 2-7 , AAAI Press, 2018: 2712 -2719.
|
[21] |
Deng X, Joseph V R, Sudjianto A, et al. Active learning through sequential design, with applications to detection of money laundering[J]. Journal of the American Statistical Association, 2009, 104(487): 969-981.
|
[22] |
Vahdat A, Belbahri M, Nia V P. Active learning for high-dimensional binary features[C]//Proceedings of 2019 15th International Conference on Network and Service Management (CNSM), Halifax, NS, Canada, October 21-25,IEEE, 2019: 1-4.
|
[23] |
Hsu H L, Chang Y I, Chen R B. Greedy active learning algorithm for logistic regression models[J]. Computational Statistics & Data Analysis, 2019, 129: 119-134.
|
[24] |
Li J, Chen Z, Wang Z, et al. Active learning in multiple-class classification problems via individualized binary models[J]. Computational Statistics & Data Analysis, 2020, 145: 106911.
|
[25] |
Perini L, Vercruyssen V, Davis J. Class prior estimation in active positive and unlabeled learning[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, July 11-17 , International Joint Conferences on Artificial Intelligence Organization, 2020: 2915-2921.
|
[26] |
Yin J, Du X. Active learning with generalized sliced inverse regression for high-dimensional reliability analysis[J]. Structural Safety, 2022, 94: 102151.
|
[27] |
方匡南, 陈子岚. 基于半监督广义可加Logistic回归的信用评分方法[J]. 系统工程理论与实践, 2020, 40(2): 392-402.
|
|
Fang K N, Chen Z L. Credit scoring based on semi-supervised generalized additive logistic regression[J]. Systems Engineering-Theory & Practice, 2020, 40(2): 392-402.
|
[28] |
胡心瀚, 叶五一, 缪柏其. 上市公司信用风险分析模型中的变量选择[J]. 数理统计与管理, 2012, 31(6): 1117-1124.
|
|
Hu X H, Ye W Y, Miao B Q. Variable selection in credit risk models for Chinese listed companies[J]. Journal of Applied Statistics and Management, 2012, 31(6): 1117-1124.
|
[29] |
方匡南, 赵梦峦. 基于多源数据融合的个人信用评分研究[J]. 统计研究, 2018, 35(12): 92-101.
|
|
Fang K N, Zhao M L. A study on credit scoring based on multi-source data integration[J]. Statistical Research, 2018, 35(12): 92-101.
|
[30] |
Settles B. Active learning literature survey[J]. Science, 1995, 10(3): 237-304.
|
[31] |
Montgomery D C. Design and analysis of experiments[M]. New York, NY: Springer New York, 1999.
|
[32] |
Shakeel N, Mehmood T. Inverse matrix problem in regression for high-dimensional data sets[J]. Mathematical Problems in Engineering, 2023, 2023(1): 2308541.
|
[33] |
Bertsekas D, Gallager R. Data networks: Second edition[M]. Nashua, NH: Athena Scientific, 2021.
|
[34] |
Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: A study on high-dimensional spaces[J]. Knowledge and Information Systems, 2007, 12(1): 95-116.
|