Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (8): 37-49.doi: 10.16381/j.cnki.issn1003-207x.2023.0327
Previous Articles Next Articles
Xiong Wang, Jingyao Li, Xiaohang Ren(), Zongrun Wang
Received:
2023-03-02
Revised:
2023-08-18
Online:
2025-08-25
Published:
2025-09-10
Contact:
Xiaohang Ren
E-mail:domrxh@outlook.com
CLC Number:
Xiong Wang, Jingyao Li, Xiaohang Ren, Zongrun Wang. Multidimensional Spillover of International Emerging Assets and Chinese Traditional Assets: Based on the Quantile VAR Network[J]. Chinese Journal of Management Science, 2025, 33(8): 37-49.
"
变量 | 均值 | 最小值 | 最大值 | 标准差 | 偏度 | 峰度 | JB检验 | ADF检验 | ARCH(1) |
---|---|---|---|---|---|---|---|---|---|
金融科技 | 0.002 | -13. 565 | 11.162 | 1.662 | -0.684 | 12.572 | 4261.839*** | -21.715*** | 122.88*** |
比特币 | -0.013 | -49.727 | 17.742 | 4.293 | -1.427 | 20.705 | 14660.823*** | -23.5915*** | 5.453** |
绿色债券 | -0.012 | -2.410 | 2.272 | 0.379 | -0.589 | 9.362 | 1908.031*** | -18.880*** | 95.934*** |
股市 | -0.012 | -8.039 | 5.554 | 1.167 | -0.587 | 7.642 | 1045.003*** | -23.254*** | 7.872*** |
原油 | 0.037 | -14.132 | 11.541 | 2.484 | -0.097 | 5.935 | 394.487*** | -22.186*** | 34.243*** |
商品 | 0.016 | -8.821 | 5.863 | 1.659 | -0.495 | 5.113 | 248.135*** | -22.056*** | 19.683*** |
黄金 | 0.031 | -4.809 | 5.399 | 0.867 | -0.220 | 7.381 | 883.680*** | -22.981*** | 26.278*** |
铜 | 0.016 | -6.407 | 5.298 | 1.125 | -0.330 | 7.394 | 900.057*** | -22.086*** | 77.578*** |
"
效应 | 金融科技 | 比特币 | 绿色债券 | 股市 | 原油 | 商品 | 黄金 | 铜 |
---|---|---|---|---|---|---|---|---|
总溢出=82.29 | ||||||||
TO | 88.65 | 79.52 | 83.57 | 81.99 | 83.70 | 85.46 | 74.75 | 80.68 |
FROM | 82.66 | 78.82 | 82.91 | 82.13 | 82.60 | 84.39 | 81.10 | 83.70 |
净溢出 | 5.99 | 0.70 | 0.66 | -0.14 | 1.10 | 1.06 | -6.35 | -3.02 |
总溢出=26.99 | ||||||||
TO | 28.44 | 14.94 | 15.67 | 47.94 | 17.09 | 55.43 | 4.43 | 31.96 |
FROM | 20.10 | 13.64 | 17.35 | 46.53 | 23.42 | 48.92 | 8.61 | 37.34 |
净溢出 | 8.34 | 1.30 | -1.68 | 1.41 | -6.33 | 6.51 | -4.18 | -5.38 |
总溢出=80.24 | ||||||||
TO | 78.42 | 77.20 | 74.25 | 84.76 | 79.78 | 85.87 | 76.36 | 85.24 |
FROM | 80.64 | 79.14 | 80.32 | 81.03 | 79.81 | 81.17 | 79.18 | 80.60 |
净溢出 | -2.22 | -1.94 | -6.07 | 3.73 | -0.02 | 4.70 | -2.82 | 4.64 |
"
效应 | 金融科技 | 比特币 | 绿色债券 | 股市 | 原油 | 商品 | 黄金 | 铜 |
---|---|---|---|---|---|---|---|---|
总溢出= 45.58 | ||||||||
TO | 37.74 | 22.56 | 62.47 | 62.56 | 32.70 | 60.53 | 36.60 | 49.46 |
FROM | 41.48 | 27.58 | 52.82 | 56.02 | 39.97 | 55.32 | 41.67 | 49.75 |
净溢出 | -3.74 | -5.02 | 9.65 | 6.54 | -7.27 | 5.21 | -5.07 | -0.29 |
总溢出=33.69 | ||||||||
TO | 44.36 | 36.92 | 23.87 | 51.35 | 19.09 | 52.05 | 9.19 | 32.71 |
FROM | 24.89 | 21.50 | 35.30 | 49.07 | 20.77 | 48.18 | 34.83 | 35.00 |
净溢出 | 19.47 | 15.42 | -11.43 | 2.28 | -1.68 | 3.87 | -25.64 | -2.29 |
总溢出=87.09 | ||||||||
TO | 136.99 | 57.07 | 112.02 | 55.25 | 130.71 | 67.61 | 71.27 | 65.83 |
FROM | 79.97 | 91.70 | 83.76 | 90.85 | 81.13 | 89.82 | 89.79 | 89.72 |
净溢出 | 57.02 | -34.63 | 28.26 | -35.60 | 49.58 | -22.21 | -18.52 | -23.89 |
"
效应 | 金融科技 | 比特币 | 绿色债券 | 股市 | 原油 | 商品 | 黄金 | 铜 |
---|---|---|---|---|---|---|---|---|
总溢出= 70.73 | ||||||||
TO | 106.10 | 2.95 | 114.68 | 77.11 | 71.17 | 75.94 | 62.96 | 54.93 |
FROM | 60.01 | 31.34 | 70.79 | 72.33 | 74.81 | 80.97 | 88.29 | 87.31 |
净溢出 | 46.09 | -28.39 | 43.89 | 4.79 | -3.64 | -5.03 | -25.33 | -32.38 |
总溢出= 25.54 | ||||||||
TO | 2.15 | 34.26 | 34.56 | 44.71 | 7.51 | 54.57 | 2.09 | 24.47 |
FROM | 1.59 | 23.84 | 23.52 | 44.02 | 10.22 | 47.06 | 24.48 | 29.58 |
净溢出 | 0.56 | 10.42 | 11.04 | 0.68 | -2.71 | 7.50 | -22.39 | -5.11 |
总溢出= 31.20 | ||||||||
TO | 9.03 | 24.85 | 42.89 | 47.36 | 19.60 | 63.21 | 9.68 | 32.95 |
FROM | 9.44 | 23.41 | 35.30 | 46.20 | 26.48 | 51.71 | 18.47 | 38.54 |
净溢出 | -0.41 | 1.44 | 7.59 | 1.16 | -6.88 | 11.50 | -8.79 | -5.59 |
"
效应 | 金融科技 | 比特币 | 绿色债券 | 股市 | 原油 | 商品 | 黄金 | 铜 |
---|---|---|---|---|---|---|---|---|
总溢出= 24.17 | ||||||||
TO | 0.64 | 33.34 | 35.20 | 42.19 | 4.97 | 54.42 | 2.54 | 20.08 |
FROM | 0.78 | 32.58 | 33.70 | 42.71 | 6.63 | 46.60 | 4.94 | 25.47 |
净溢出 | -0.14 | 0.76 | 1.50 | -0.52 | -1.66 | 7.82 | -2.40 | -5.39 |
总溢出= 24.77 | ||||||||
TO | 0.49 | 37.96 | 37.38 | 41.98 | 4.56 | 54.16 | 1.90 | 19.69 |
FROM | 0.51 | 33.27 | 32.45 | 42.53 | 6.22 | 46.41 | 11.62 | 25.11 |
净溢出 | -0.02 | 4.69 | 4.93 | -0.55 | -1.66 | 7.75 | -9.72 | -5.42 |
总溢出= 83.82 | ||||||||
TO | 124.37 | 30.87 | 82.24 | 130.54 | 91.79 | 108.39 | 48.85 | 53.49 |
FROM | 79.74 | 91.96 | 85.74 | 74.66 | 83.89 | 82.32 | 90.03 | 82.17 |
净溢出 | 44.63 | -61.09 | -3.50 | 55.88 | 7.90 | 26.07 | -41.18 | -28.68 |
[1] | 杨子晖, 陈里璇, 陈雨恬. 经济政策不确定性与系统性金融风险的跨市场传染——基于非线性网络关联的研究[J]. 经济研究, 2020, 55(1): 65-81. |
Yang Z H, Chen L X, Chen Y T. Cross-market contagion of economic policy uncertainty and systemic financial risk: A nonlinear network connectedness analysis[J]. Economic Research Journal, 2020, 55(1): 65-81. | |
[2] | 刘少波, 张友泽, 梁晋恒. 金融科技与金融创新研究进展[J]. 经济学动态, 2021(3): 126-144. |
Liu S B, Zhang Y Z, Liang J H. Research progress on FinTech and financial innovation[J]. Economic Perspectives, 2021(3): 126-144. | |
[3] | 姬强, 胡旻, 马嫣然, 等. 全球数字货币波动对中国金融资产的风险溢出效应研究[J]. 管理评论, 2022, 34(2): 102-111. |
Ji Q, Hu M, Ma Y R, et al. Risk spillovers between global cryptocurrency and Chinese financial assets[J]. Management Review, 2022, 34(2): 102-111. | |
[4] | Monasterolo I, Raberto M. The EIRIN flow-of-funds behavioural model of green fiscal policies and green sovereign bonds[J]. Ecological Economics, 2018, 144: 228-243. |
[5] | Brunetti C, Harris J H, Mankad S, et al. Interconnectedness in the interbank market[J]. Journal of Financial Economics, 2019, 133(2): 520-538. |
[6] | 宫晓莉, 熊熊, 张维. 我国金融机构系统性风险度量与外溢效应研究[J]. 管理世界, 2020, 36(8): 65-83. |
Gong X L, Xiong X, Zhang W. Research on systemic risk measurement and spillover effect of financial institutions in China[J]. Journal of Management World, 2020, 36(8): 65-83. | |
[7] | 杨子晖, 李东承, 王姝黛. 合成网络新视角下的输入性金融风险研究[J]. 中国工业经济, 2022(3): 38-56. |
Yang Z H, Li D C, Wang S D. Research on imported financial risk from the new perspective of composite network[J]. China Industrial Economics, 2022(3): 38-56. | |
[8] | Da Fonseca J, Xu Y. Higher moment risk premiums for the crude oil market: A downside and upside conditional decomposition[J].Energy Economics,2017,67: 410-422. |
[9] | 王鹏, 吕永健. 国际原油市场极端风险的测度模型及后验分析[J]. 金融研究, 2018(9): 192-206. |
Wang P, Lv Y J. Extreme risk measurement models of international oil market and backtesting analysis[J]. Journal of Financial Research, 2018(9): 192-206. | |
[10] | 鲁万波, 黄光麟, Boudt Kris. 股市涨跌预测与量化投资策略: 基于时变矩成分分析[J]. 中国管理科学, 2020, 28(2): 1-12. |
Lu W B, Huang G L, Boudt K. Stock market rise-fall forecast and quantitative investment strategy: Based on time varying MCA[J]. Chinese Journal of Management Science, 2020, 28(2): 1-12. | |
[11] | 林娟娟, 唐勇, 周小亮, 等. 北上资金、百度指数与股市关联性的时频域研究——基于协高阶矩视角[J]. 中国管理科学, 2022, 30(1): 20-31. |
Lin J J, Tang Y, Zhou X L, et al. Research on the relationship between northward capital, Baidu index and stock market in time and frequency domain:Based on the perspective of higher order co-moments[J]. Chinese Journal of Management Science, 2022, 30(1): 20-31. | |
[12] | Lin C H. The comovement between exchange rates and stock prices in the Asian emerging markets[J]. International Review of Economics & Finance, 2012, 22(1): 161-172. |
[13] | 王鹏, 蒋焰, 吴金宴.原油价格与世界股票市场之间的高阶矩相依性研究[J].管理科学,2017,30(3): 136-146. |
Wang P, Jiang Y, Wu J Y. Dependence of higher moments between oil price and international stock markets[J]. Journal of Management Science, 2017, 30(3): 136-146. | |
[14] | 刘志峰, 张子汸, 戴鹏飞, 等. 碳市场与股票市场间的崩盘风险溢出效应研究: 新冠疫情、投资者情绪与经济政策不确定性[J]. 系统工程理论与实践, 2023, 43(3): 740-754. |
Liu Z F, Zhang Z P, Dai P F, et al. A study on the spillover effect of crash risk between carbon and stock markets: COVID-19, investor sentiment and economic policy uncertainty[J]. Systems Engineering-Theory & Practice, 2023, 43(3): 740-754. | |
[15] | 崔金鑫, 邹辉文. 时频视角下国际股市间高阶矩风险溢出效应研究[J]. 国际金融研究, 2020(6): 75-85. |
Cui J X, Zou H W. Research on higher-moment risk spillover effects among international stock markets from the time-frequency perspective[J]. Studies of International Finance, 2020(6): 75-85. | |
[16] | 周开国, 季苏楠, 杨海生. 系统性金融风险跨市场传染机制研究——基于金融协调监管视角[J]. 管理科学学报, 2021, 24(7): 1-20. |
Zhou K G, Ji S N, Yang H S. Cross-market contagion mechanism of systemic risk from the perspective of coordinated supervision[J]. Journal of Management Sciences in China, 2021, 24(7): 1-20. | |
[17] | Selmi R, Mensi W, Hammoudeh S, et al. Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold[J]. Energy Economics, 2018, 74: 787-801. |
[18] | Shahzad S J H, Bouri E, Roubaud D, et al. Is Bitcoin a better safe-haven investment than gold and commodities?[J]. International Review of Financial Analysis, 2019, 63: 322-330. |
[19] | Jiang H, Tang S, Li L, et al. Re-examining the contagion channels of global financial crises: Evidence from the twelve years since the US subprime crisis[J]. Research in International Business and Finance, 2022, 60: 101617. |
[20] | 赵林海, 陈名智. 金融机构系统性风险溢出和系统性风险贡献——基于滚动窗口动态Copula模型双时变相依视角[J]. 中国管理科学, 2021, 29(7): 71-83. |
Zhao L H, Chen M Z. Systemic risk spillovers and systemic risk contributions of financial institutions in China: A perspective of dual time-varying dependence of rolling window dynamic copula model[J]. Chinese Journal of Management Science, 2021, 29(7): 71-83. | |
[21] | 熊正德, 文慧, 熊一鹏. 我国外汇市场与股票市场间波动溢出效应实证研究——基于小波多分辨的多元BEKK-GARCH(1, 1)模型分析[J]. 中国管理科学, 2015, 23(4): 30-38. |
Xiong Z D, Wen H, Xiong Y P. Empirical research on spillover effect between foreign exchange market and stock market by wavelet multi-resolution analysis and multivariate BEKK-GARCH(1, 1)model[J]. Chinese Journal of Management Science, 2015, 23(4): 30-38. | |
[22] | Zhang H, Chen J, Shao L. Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19[J]. International Review of Financial Analysis, 2021, 77: 101828. |
[23] | Bargigli L, di Iasio G, Infante L, et al. The multiplex structure of interbank networks[J]. Quantitative Finance, 2015, 15(4): 673-691. |
[24] | Krause A, Giansante S. Interbank lending and the spread of bank failures: A network model of systemic risk[J]. Journal of Economic Behavior & Organization, 2012, 83(3): 583-608. |
[25] | 何德旭, 苗文龙, 闫娟娟, 等.全球系统性金融风险跨市场传染效应分析[J].经济研究,2021,56(8): 4-21. |
He D X, Miao W L, Yan J J, et al. Analysis on the global systemic financial risks cross-market contagion effect[J]. Economic Research Journal, 2021, 56(8): 4-21. | |
[26] | Liu B Y, Fan Y, Ji Q, et al. High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system[J]. Energy Economics, 2022, 105: 105749. |
[27] | León Á, Rubio G, Serna G. Autoregresive conditional volatility, skewness and kurtosis[J]. The Quarterly Review of Economics and Finance, 2005, 45(4-5): 599-618. |
[28] | Ando T, Greenwood-Nimmo M, Shin Y. Quantile connectedness: Modeling tail behavior in the topology of financial networks[J]. Management Science, 2022, 68(4): 2401-2431. |
[29] | Koop G, Pesaran M H, Potter S M. Impulse response analysis in nonlinear multivariate models[J]. Journal of Econometrics, 1996, 74(1): 119-147. |
[30] | Pesaran H H, Shin Y. Generalized impulse response analysis in linear multivariate models[J]. Economics Letters, 1998, 58(1): 17-29. |
[31] | King M A, Wadhwani S. Transmission of volatility between stock markets[J]. The Review of Financial Studies, 1990, 3(1): 5-33. |
[32] | Connolly R A, Wang F A. International equity market comovements: Economic fundamentals or contagion?[J].Pacific-Basin Finance Journal, 2003, 11(1): 23-43. |
[33] | Chen J, Liang Z, Ding Q, et al. Quantile connectedness between energy, metal, and carbon markets[J]. International Review of Financial Analysis, 2022, 83: 102282. |
[34] | 李政, 石晴, 卜林. 基于分位数关联的政策连续性跨国溢出研究[J]. 金融研究, 2022(8): 94-112. |
Li Z, Shi Q, Bu L. Quantile connectedness of policy continuity across the globe[J]. Journal of Financial Research, 2022(8): 94-112. | |
[35] | 黄云洲, 黄炯豪, 夏晓华. 比特币价格风险、宏观经济波动与股市风险传染——基于分位数关联网络的分析[J]. 中国管理科学, 2024, 32(4): 26-37. |
Huang Y Z, Huang J H, Xia X H. Bitcoin price risk, macroeconomic environment and risk contagion in China’s stock market: An analysis based on quantile coherency network[J]. Chinese Journal of Management Science, 2024, 32(4): 26-37. | |
[36] | 韩立岩, 尹力博. 投机行为还是实际需求? ——国际大宗商品价格影响因素的广义视角分析[J]. 经济研究, 2012, 47(12): 83-96. |
Han L Y, Yin L B. Speculation or real demand? A multi-vision economic analysis of the international commodity prices impact factors[J]. Economic Research Journal, 2012, 47(12): 83-96. | |
[37] | 张大永, 姬强. 中国原油期货动态风险溢出研究[J]. 中国管理科学, 2018, 26(11): 42-49. |
Zhang D Y, Ji Q. Studies on the dynamic risk spillovers for China’s crude oil futures[J]. Chinese Journal of Management Science, 2018, 26(11): 42-49. | |
[38] | Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software: Practice and Experience, 1991, 21(11): 1129-1164. |
[39] | Zhou Y, Wu S, Zhang Z. Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network[J]. Energy Economics, 2022, 114: 106319. |
[1] | LI Chaofan, MENG Qingxi, WANG Shengnian. The Crowding-out Effect of Financial Assets Investment on Innovation Investment [J]. Chinese Journal of Management Science, 2021, 29(10): 12-22. |
[2] | JIANG Cui-xia, XU Qi-fa, ZHANG Shi-ying. Conditional Higher Moments Risk and Dynamic Portfolio in Financial Markets [J]. Chinese Journal of Management Science, 2007, 15(1): 27-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|