[1] |
欧阳桃花, 郑舒文, 程杨. 构建重大突发公共卫生事件治理体系: 基于中国情景的案例研究[J]. 管理世界, 2020, 36(8): 19-32.
|
|
Ouyang T H, Zheng S W, Cheng Y. The construction of a governance system for large-scale public health emergency: A case study based on the Chinese scenario[J].Journal of Management World,2020,36(8): 19-32.
|
[2] |
Cui P, Liu Y, Ju X, et al. Key influencing factors and optimization strategy of epidemic resilience in urban communities-a case study of Nanjing, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(16): 9993.
|
[3] |
徐选国, 陈杏钧. 社会工作介入“社区韧性” 的生产机制与“韧性社区” 的目标构建——基于对重大疫情防控的经验研究[J]. 河海大学学报(哲学社会科学版), 2021, 23(4): 68-76+107-108.
|
|
Xu X G, Chen X J. The production mechanism of “community resilience” and the goal construction routes of “resilient community” intervened by social work: An empirical research on major public emergency events[J]. Journal of Hohai University (Philosophy and Social Sciences), 2021, 23(4): 68-76+107-108.
|
[4] |
South J, Stansfield J, Amlôt R, et al. Sustaining and strengthening community resilience throughout the COVID-19 pandemic and beyond[J]. Perspectives in Public Health, 2020, 140(6): 305-308.
|
[5] |
Lu H, Lu X, Jiao L, et al. Evaluating urban agglomeration resilience to disaster in the Yangtze Delta city group in China[J]. Sustainable Cities and Society, 2022, 76: 103464.
|
[6] |
Liu D, Fan Z, Fu Q, et al. Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm[J]. Journal of Cleaner Production, 2020, 250: 119468.
|
[7] |
陈群, 黄骞, 陈哲, 等. 基于贝叶斯网络的地铁工程系统韧性评价[J]. 中国安全科学学报, 2018, 28(11): 98-103.
|
|
Chen Q, Huang Q, Chen Z, et al. Quantitative evaluation of resilience of metro engineering system based on Bayesian networks[J]. China Safety Science Journal, 2018, 28(11): 98-103.
|
[8] |
Li S, Gu C, Li J, et al. Boosting grid efficiency and resiliency by releasing V2G potentiality through a novel rolling prediction-decision framework and deep-LSTM algorithm[J]. IEEE Systems Journal, 2021, 15(2): 2562-2570.
|
[9] |
Wang S, Gu X, Luan S, et al. Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory[J]. International Journal of Critical Infrastructure Protection, 2021,35: 100459.
|
[10] |
王子昊, 王旭, 蒋传文, 等. 基于近端策略优化算法的灾后配电网韧性提升方法[J]. 电力系统自动化, 2022, 46(21): 62-70.
|
|
Wang Z H, Wang X, Jiang C W, et al. Resilience improvement method for post-disaster distribution network based on proximal policy optimization algorithm[J]. Automation of Electric Power Systems, 2022, 46(21): 62-70.
|
[11] |
张伟, 陈琪伟, 朱宇霁, 等. 重大公共卫生事件背景下社区韧性影响因素模型研究[J]. 公共管理学报, 2022, 19(3): 96-109+172.
|
|
Zhang W, Chen Q W, Zhu Y J, et al. Key determinants of community resilience in major public health incidents[J]. Journal of Public Management, 2022, 19(3): 96-109+172.
|
[12] |
Koliou M, van de Lindt J W, McAllister T P, et al. State of the research in community resilience: Progress and challenges[J]. Sustainable and Resilient Infrastructure, 2020, 5(3): 131-151.
|
[13] |
颜德如. 构建韧性的社区应急治理体制[J]. 行政论坛, 2020, 26(3): 89-96.
|
|
Yan D R. Construction of the resilient community emergency management system[J]. Administrative Tribune, 2020, 26(3): 89-96.
|
[14] |
陈玉梅, 李康晨. 国外公共管理视角下韧性城市研究进展与实践探析[J]. 中国行政管理, 2017(1): 137-143.
|
|
Chen Y M, Li K C. Overseas studies progress and practice exploration on resilient city—Based on the perspective of public administration[J]. Chinese Public Administration, 2017(1): 137-143.
|
[15] |
蓝煜昕, 张雪. 社区韧性及其实现路径: 基于治理体系现代化的视角[J]. 行政管理改革,2020(7): 73-82.
|
|
Lan Y X, Zhang X. Community resilience and Its Realization path: From the perspective of governance system modernization[J]. Administration Reform, 2020(7): 73-82.
|
[16] |
刘金平, 周嘉铭, 刘先锋, 等. 基于聚类簇结构特性的自适应综合采样法在入侵检测中的应用[J]. 控制与决策, 2021, 36(8): 1920-1928.
|
|
Liu J P, Zhou J M, Liu X F, et al. Toward intrusion detection via cluster structure-based adaptive synthetic sampling approach[J]. Control and Decision, 2021, 36(8): 1920-1928.
|
[17] |
Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
|
[18] |
Tang P, Wang H, Kwong S. G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition[J].Neurocomputing,2017, 225: 188-197.
|
[19] |
Nemoto K, Hamaguchi R, Imaizumi T, et al. Classification of rare building change using CNN with multi-class focal loss[C]//Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,Valencia,Spain, July 22-27,IEEE, 2018: 4663-4666.
|
[20] |
Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
|
[21] |
Khan S, Islam N, Jan Z, et al. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning[J]. Pattern Recognition Letters, 2019, 125: 1-6.
|
[22] |
Premkumar M, Jangir P, Sowmya R, et al. MOSMA: Multi-objective slime mould algorithm based on elitist non-dominated sorting[J]. IEEE Access, 2020, 9: 3229-3248.
|
[23] |
Xie J, Alvarez-Fernandez I, Sun W. A review of machine learning applications in power system resilience[C]//Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM),Montreal,QC,Canada, August 2-6, IEEE, 2020: 1-5.
|
[24] |
Gunantara N, Ai Q. A review of multi-objective optimization: Methods and its applications[J]. Cogent Engineering, 2018, 5(1):1502242.
|
[25] |
Mohammed R, Rawashdeh J, Abdullah M. Machine learning with oversampling and undersampling techniques: Overview study and experimental results[C]//Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, April 7-9, IEEE, 2020: 243-248.
|
[26] |
Netrapalli P. Stochastic gradient descent and its variants in machine learning[J]. Journal of the Indian Institute of Science, 2019, 99(2): 201-213.
|