Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (7): 178-186.doi: 10.16381/j.cnki.issn1003-207x.2022.2444
Xiaoyi Gou1, Chuanmin Mi1(), Bo Zeng2, Mingzhu Li1, Yingting Xu3
Received:
2022-11-09
Revised:
2023-02-15
Online:
2025-07-25
Published:
2025-08-06
Contact:
Chuanmin Mi
E-mail:cmmi@nuaa.edu.cn
CLC Number:
Xiaoyi Gou, Chuanmin Mi, Bo Zeng, Mingzhu Li, Yingting Xu. A Novel Seasonal Discrete Grey Forecasting Model based on Transverse and Longitudinal Dimensions and Its Application[J]. Chinese Journal of Management Science, 2025, 33(7): 178-186.
"
时间 | 原始数据 | FDGM_SD∙PSO | FMGM(1,N) | PSO-FDGGM(1,1) | SGM(1,1) | ||||
---|---|---|---|---|---|---|---|---|---|
建模结果 | 误差 | 建模结果 | 误差 | 建模结果 | 误差 | 建模结果 | 误差 | ||
模拟检验 | |||||||||
2013Q1 | 129449.6 | 129449.600 | 0.000 | 129449.600 | 0.000 | 129449.600 | 0.000 | 129449.600 | 0.000 |
2013Q2 | 143518.7 | 143518.700 | 0.000 | 140382.161 | 2.185 | 143518.700 | 0.000 | 141198.563 | 1.617 |
2013Q3 | 152222.7 | 152222.700 | 0.000 | 152713.449 | 0.322 | 152222.700 | 0.000 | 151547.298 | 0.444 |
2013Q4 | 167772.3 | 167772.300 | 0.000 | 167254.883 | 0.308 | 167772.300 | 0.000 | 170553.853 | 1.658 |
2014Q1 | 140759.8 | 140380.382 | 0.270 | 136400.963 | 3.097 | 135452.339 | 3.771 | 135521.105 | 3.722 |
2014Q2 | 156489.6 | 156329.309 | 0.102 | 148293.426 | 5.238 | 152858.166 | 2.321 | 153983.285 | 1.602 |
2014Q3 | 165484.7 | 165396.966 | 0.053 | 164523.990 | 0.581 | 161841.015 | 2.202 | 165269.038 | 0.130 |
2014Q4 | 180828.9 | 180898.550 | 0.039 | 181351.468 | 0.289 | 179850.821 | 0.541 | 185996.528 | 2.858 |
2015Q1 | 151137.9 | 151239.244 | 0.067 | 151818.037 | 0.450 | 150837.844 | 0.199 | 147791.765 | 2.214 |
2015Q2 | 168549.7 | 168706.232 | 0.093 | 164523.703 | 2.389 | 168214.258 | 0.199 | 167925.589 | 0.370 |
2015Q3 | 176597.7 | 177011.225 | 0.234 | 181281.210 | 2.652 | 177657.759 | 0.600 | 180233.203 | 2.059 |
2015Q4 | 192572.9 | 193074.298 | 0.260 | 198461.244 | 3.058 | 196271.572 | 1.921 | 202837.448 | 5.330 |
2016Q1 | 162410 | 165307.444 | 1.784 | 169167.680 | 4.161 | 167556.879 | 3.169 | 161173.464 | 0.761 |
2016Q2 | 181408.2 | 182129.582 | 0.398 | 182037.116 | 0.347 | 185371.651 | 2.185 | 183130.290 | 0.949 |
2016Q3 | 191010.6 | 190917.832 | 0.049 | 198905.246 | 4.133 | 195154.279 | 2.169 | 196552.288 | 2.901 |
2016Q4 | 211566.2 | 210533.468 | 0.488 | 216157.800 | 2.170 | 214560.029 | 1.415 | 221203.218 | 4.555 |
2017Q1 | 181867.7 | 180721.853 | 0.630 | 186908.863 | 2.772 | 184340.051 | 1.359 | 175766.798 | 3.355 |
2017Q2 | 201950.3 | 200482.239 | 0.727 | 199802.167 | 1.064 | 203473.277 | 0.754 | 199711.690 | 1.108 |
2017Q3 | 212789.3 | 212528.294 | 0.123 | 216678.511 | 1.828 | 213411.818 | 0.293 | 214348.972 | 0.733 |
2017Q4 | 235428.7 | 235819.705 | 0.166 | 233927.348 | 0.638 | 234193.940 | 0.524 | 241231.903 | 2.465 |
2018Q1 | 202035.7 | 199124.611 | 1.441 | 204665.532 | 1.302 | 200846.150 | 0.589 | 191681.475 | 5.125 |
2018Q2 | 223962.2 | 221647.823 | 1.033 | 217538.880 | 2.868 | 222230.567 | 0.773 | 217794.440 | 2.754 |
2018Q3 | 234474.3 | 234474.301 | 0.000 | 234389.783 | 0.036 | 232118.668 | 1.005 | 233757.045 | 0.306 |
2018Q4 | 258808.9 | 258200.278 | 0.235 | 251608.926 | 2.782 | 255008.831 | 1.468 | 263074.071 | 1.648 |
2019Q1 | 217168.3 | 218315.070 | 0.528 | 222314.118 | 2.370 | 216969.663 | 0.091 | 209037.136 | 3.744 |
2019Q2 | 241502.6 | 242007.973 | 0.209 | 235151.931 | 2.630 | 241523.758 | 0.009 | 237514.479 | 1.651 |
2019Q3 | 251046.3 | 251074.738 | 0.011 | 251965.353 | 0.366 | 251142.540 | 0.038 | 254922.407 | 1.544 |
2019Q4 | 276798 | 277981.091 | 0.427 | 269145.542 | 2.765 | 276953.269 | 0.056 | 286893.922 | 3.647 |
预测检验 | |||||||||
2020Q1 | 205244.8 | 236581.148 | 15.268 | 239810.692 | 16.841 | 232682.674 | 13.368 | 227964.252 | 11.069 |
2020Q2 | 248347.7 | 248347.700 | 0.000 | 252607.678 | 1.715 | 261298.514 | 5.215 | 259020.056 | 4.297 |
2020Q3 | 264355.7 | 257284.107 | 2.675 | 269379.737 | 1.900 | 270420.233 | 2.294 | 278004.172 | 5.163 |
2020Q4 | 295618.8 | 295618.800 | 0.000 | 286518.228 | 3.078 | 300022.831 | 1.490 | 312870.524 | 5.836 |
2021Q1 | 247985 | 247760.060 | 0.091 | 257141.506 | 3.692 | 247986.274 | 0.001 | 248605.110 | 0.250 |
2021Q2 | 281528 | 278354.425 | 1.127 | 269896.582 | 4.132 | 281530.285 | 0.001 | 282472.839 | 0.336 |
2021Q3 | 289919.3 | 290125.537 | 0.071 | 286626.797 | 1.136 | 289919.709 | 0.001 | 303175.858 | 4.572 |
2021Q4 | 324237.4 | 326433.425 | 0.677 | 303723.600 | 6.327 | 324236.572 | 0.001 | 341199.159 | 5.231 |
[1] | 龙会典,严广乐.基于SARIMA、GM(1,1)和BP神经网络集成模型的GDP时间序列预测研究[J].数理统计与管理,2013,32(5):814-822. |
Long H D, Yan G L. Research on GDP time series forecasting based on integrating SARIMA, GM(1,1) and BP neural networks[J]. Journal of Applied Statistics and Management,2013,32(5):814-822. | |
[2] | 蒋锋,张文雅.机器学习方法在经济研究中的应用[J].统计与决策,2022,38(4):43-49. |
Jiang F, Zhang W Y. Application of machine learning methods in economic research[J]. Statistics & Decision,2022,38(4):43-49. | |
[3] | Jiang Y, Guo Y J, Zhang Y H. Forecasting China's GDP growth using dynamic factors and mixed-frequency data[J]. Economic Modelling, 2017, 66:132-138. |
[4] | 曾波,李惠,余乐安,等.季节波动数据特征提取与分数阶灰色预测建模[J].系统工程理论与实践,2022,42(2):471-486. |
Zeng B, Li H, Yu L A, et al. Feature extraction and fractional grey prediction modeling of seasonal fluctuation data[J]. Systems Engineering-Theory & Practice, 2022,42(2):471-486. | |
[5] | Liu S F, Yang Y J, Forrest J. Grey data analysis: Methods,models and applications[M].London: Springer, 2016. |
[6] | Xin X, Hu X, Guo H. A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption[J]. Energy, 2021, 234: 121127. |
[7] | Zhou W J, Tao H H, Ding S, et al. Electricity consumption and production forecasting considering seasonal patterns: An investigation based on a novel seasonal discrete grey model[J]. Journal of the Operational Research Society, 2023, 74(5): 1346-1361. |
[8] | Zhou W J, Wu X L, Ding S, et al. Predictive analysis of the air quality indicators in the yangtze river delta in china: An application of a novel seasonal grey model [J].Science of the Total Environment, 2020, 748: 141428. |
[9] | Zhou W J, Wu X L, Ding S, et al. Predictions and mitigation strategies of PM2.5 concentration in the Yangtze River Delta of China based on a novel nonlinear seasonal grey model[J].Environmental Pollution,2021,276: 116614. |
[10] | 张国政,罗党.基于季节波动序列的灰色预测模型及其应用[J].统计与决策,2021,37(23):23-27. |
Zhang G Z, Luo D. Grey forecasting model based on seasonal fluctuation sequence and its application[J]. Statistics & Decision,2021,37(23):23-27. | |
[11] | Wang Z X, Li Q, Pei L L. A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors[J].Energy,2018,154: 522-534. |
[12] | Wang Z X, Wang Z W, Li Q. Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors[J]. Energy, 2020, 200: 117460. |
[13] | Li N, Wang J L, Wu L F, et al. Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization[J]. Energy, 2021, 215: 119118. |
[14] | Du P, Guo J, Sun S L, et al. A novel two-stage seasonal grey model for residential electricity consumption forecasting [J]. Energy, 2022, 258: 124664. |
[15] | Wang Z X, He L Y, Zhao Y F. Forecasting the seasonal natural gas consumption in the US using a gray model with dummy variables[J]. Applied Soft Computing, 2021, 113: 108002. |
[16] | Zhou W J, Ding S. A novel discrete grey seasonal model and its applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 93: 105493. |
[17] | Zhou W J, Jiang R R, Ding S, et al A novel grey prediction model for seasonal time series[J]. Knowledge-Based Systems, 2021, 229: 107363. |
[18] | 王正新,赵宇峰.含季节性虚拟变量的GM(1,1)模型及其应用[J].系统工程理论与实践,2020,40(11):2981-2990. |
Wang Z X, Zhao Y F. GM(1,1) model with seasonal dummy variables and its application[J].Systems Engineering-Theory & Practice,2020,40(11):2981-2990. | |
[19] | Wang Z X, Li Q, Pei L L. Grey forecasting method of quarterly hydropower production in China based on a data grouping approach[J]. Applied Mathematical Modelling, 2017, 51: 302-316. |
[20] | Chen H B, Pei L L, Zhao Y F. Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach[J]. Energy, 2021, 222: 119952. |
[21] | Li X M, Guo X C, Liu L N, et al. A novel seasonal grey model for forecasting the quarterly natural gas production in China [J]. Energy Reports, 2022(8):9142-9157. |
[22] | Ding S, Tao Z, Li R J, et al. A novel seasonal adaptive grey model with the data-restacking technique for monthly renewable energy consumption forecasting [J]. Expert Systems with Applications, 2022, 208: 118115. |
[23] | Qian W Y, Wang J. An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China[J]. Energy, 2020, 209: 118499. |
[24] | Xia M, Wong W K. A seasonal discrete grey forecasting model for fashion retailing[J]. Knowledge-Based Systems, 2014, 57: 119-126. |
[25] | Xiao X P, Yang J W, Mao S H, et al. An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow[J]. Applied Mathematical Modelling, 2017, 51: 386-404. |
[26] | Tang T, Jiang W H, Zhang H, et al. GM(1,1) based improved seasonal index model for monthly electricity consumption forecasting[J].Energy,2022,252: 124041. |
[27] | Zhou W J, Pan J, Tao H H, et al. A novel grey seasonal model based on cycle accumulation generation for forecasting energy consumption in China[J]. Computers & Industrial Engineering, 2022, 163: 107725. |
[28] | Wang X L, Xie N M, Yang L. A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series[J]. Chaos, Solitons & Fractals, 2022, 162: 112417. |
[29] | 周坤,高晓辉,李廉水.基于EMD-XGB-ELM和FSGM双元处理的碳排放交易价格集成预测[J].中国管理科学,2024, 32(10): 325-334. |
Zhou K, Gao X H, Li L S. Integrated carbon emission trading price prediction based on EMD -XGB-Elm and FSGM form the perspective of dual processing[J]. Chinese Journal of Management Science,2024,32(10): 325-334. | |
[30] | 曾波,余乐安,刘思峰,等.灰色累加算子与灰色累减算子的统一及其应用[J].系统工程理论与实践,2021,41(10):2710-2720. |
Zeng B, Yu L A, Liu S F, et al. Unification of grey accumulation operator and the inverse operator and its application[J]. Systems Engineering-Theory &Practice,2021,41(10): 2710-2720. | |
[31] | 曾波,李树良,孟伟. 灰色预测理论及其应用[M]. 北京: 科学出版社, 2020. |
Zeng B, Li S L, Meng W. Grey prediction theory and its applications [M]. Beijing: Science Press,2020. |
[1] | Yunjie Mei,Xiangyan Zeng,Shuli Yan. A Matrix Autoregressive Time-delay Grey Multivariable Model for Three-parameter Interval Grey Number Sequences [J]. Chinese Journal of Management Science, 2024, 32(9): 48-58. |
[2] | Shuliang Li,Shuangyi Yang,Bo Zeng,Wei Meng,Yun Bai. Unbiased and Adaptive of Discrete Grey Prediction Model and Its Application [J]. Chinese Journal of Management Science, 2024, 32(8): 149-158. |
[3] | Lianyi Liu,Sifeng Liu,Lifeng Wu. New Energy Vehicle Sales Forecast Based on Siscrete Time Grey Power Model [J]. Chinese Journal of Management Science, 2024, 32(1): 106-114. |
[4] | ZHOU Wei-jie, JIANG Hui-min, CHENG Yu-ke, DANG Yao-guo, DING Song. Forecasting Chinese Hydropower Consumption Forecasting by Using the Repeatability Fractional Grey Time Power Model [J]. Chinese Journal of Management Science, 2023, 31(5): 279-286. |
[5] | ZENG Bo, GOU Xiao-yi, ZHANG Zhi-wei. Research on the Non-Uniqueness of Solutions of the Mean Difference GM(1,1) Model Based on Interval Grey Interaction [J]. Chinese Journal of Management Science, 2022, 30(10): 247-255. |
[6] | XIONG Ping-ping, CHEN Shi-ting, ZHOU Yi-fan, LIU Yu-chun, DING Song. MGM (1, m, N) Model Based on the New Kernel and Degree of Greyness Sequences and Its Application [J]. Chinese Journal of Management Science, 2022, 30(7): 130-139. |
[7] | LI Hui, ZENG Bo, ZHOU Wen-hao. Forecasting Domestic Waste Clearing and Transporting Volume by Employing A New Grey Parameter Combination Optimization Model [J]. Chinese Journal of Management Science, 2022, 30(4): 96-107. |
[8] | LI Ye, DING Yuan-ping. Construction of Linear Time-varying Parameters DLDGM(1,N) Model Based on Driving Factors Control [J]. Chinese Journal of Management Science, 2022, 30(3): 221-229. |
[9] | DUAN Hui-ming, XIAO Xin-ping. Research on Grey Inertial Model and Its Application Property [J]. Chinese Journal of Management Science, 2022, 30(3): 269-279. |
[10] | XIA Jie, MA Xin, WU Wen-qing. The Improved FAGM(1, 1) Model Based on Simpson Formula and Its Applications [J]. Chinese Journal of Management Science, 2021, 29(5): 240-248. |
[11] | QIAN Li-li, LIU Si-feng, DENG Gui-feng. Grey Off-target Deviation Degree Method for Group Decision-making with Regret Aversion [J]. Chinese Journal of Management Science, 2020, 28(6): 193-200. |
[12] | ZENG Bo, LIU Si-feng, BAI Yun, ZHOU Meng. Grey System Modeling Technology for Early Prediction and Warning of Human Diseases [J]. Chinese Journal of Management Science, 2020, 28(1): 144-152. |
[13] | DING Song, LI Ruo-jin, DANG Yao-guo. Construction and Application of GM(1,1) Power Model based on the Optimized Initial Condition [J]. Chinese Journal of Management Science, 2020, 28(1): 153-161. |
[14] | WU Li-feng, YU Liang, WEN Zhao-xia. GM(0,N) Model for Its Application on Forecasting the Development Cost of Complicated Equipment [J]. Chinese Journal of Management Science, 2019, 27(7): 203-207. |
[15] | ZHOU Wei-jie, ZHANG Hong-ru, DANG Yao-guo, WANG Zheng-xin. New Information Priority Accumulated Grey Discrete Model and Its Application [J]. Chinese Journal of Management Science, 2017, 25(8): 140-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|