Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (1): 106-114.doi: 10.16381/j.cnki.issn1003-207x.2021.2567
Previous Articles Next Articles
Lianyi Liu1,Sifeng Liu1,2(),Lifeng Wu3
Received:
2021-12-09
Revised:
2022-01-21
Online:
2024-01-25
Published:
2024-02-08
Contact:
Sifeng Liu
E-mail:sfliu@nuaa.edu.cn
CLC Number:
Lianyi Liu,Sifeng Liu,Lifeng Wu. New Energy Vehicle Sales Forecast Based on Siscrete Time Grey Power Model[J]. Chinese Journal of Management Science, 2024, 32(1): 106-114.
"
t | 真实 数据 | GM (1,1) | DGM (1,1) | 灰色幂模型 | 灰色时间幂模型 | DTGPM |
---|---|---|---|---|---|---|
1 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 |
2 | 9.4 | 5.20 | 5.47 | 12.32 | 9.40 | 9.40 |
3 | 16.6 | 9.80 | 10.54 | 15.53 | 16.94 | 16.63 |
4 | 29.8 | 18.46 | 20.32 | 29.29 | 30.58 | 29.74 |
5 | 55.0 | 34.78 | 39.15 | 55.24 | 55.97 | 55.00 |
6 | 104.2 | 65.54 | 75.46 | 104.20 | 104.20 | 104.29 |
7 | 201.4 | 123.50 | 145.42 | 196.54 | 197.01 | 201.36 |
8 | 394.6 | 232.72 | 280.25 | 370.71 | 376.92 | 394.60 |
拟合MAPE% | 34.66 | 27.91 | 6.02 | 1.64 | ||
9 | 779.8 | 438.52 | 540.09 | 699.23 | 727.14 | 783.95 |
预测MAPE% | 43.77 | 30.74 | 10.33 | 6.75 |
"
扰动 | ||||||
---|---|---|---|---|---|---|
GM(1,1) | 拟合MAPE | 34.81 | 34.35 | 34.35 | 34.48 | 34.54 |
预测MAPE | 43.85 | 43.77 | 43.85 | 44.46 | 44.52 | |
DGM(1,1) | 拟合MAPE | 27.07 | 27.56 | 27.46 | 27.54 | 27.72 |
预测MAPE | 30.84 | 30.75 | 30.82 | 31.58 | 32.96 | |
灰色幂模型 | 拟合MAPE | 5.87 | 6.08 | 6.05 | 6.52 | 6.96 |
预测MAPE | 11.01 | 12.51 | 14.97 | 14.94 | 15.71 | |
灰色时间幂模型 | 拟合MAPE | 1.76 | 1.82 | 2.05 | 2.62 | 3.62 |
预测MAPE | 6.83 | 6.91 | 7.06 | 7.52 | 8.76 | |
DTGPM | 拟合MAPE | |||||
预测MAPE |
"
年份 | 实际值 | GM(1,1) | DGM(1,1) | 分数阶灰色模型 | 灰色幂模型 | 灰色时间幂模型 | DTGPM |
---|---|---|---|---|---|---|---|
2011 | 9356.32 | 9356.32 | 9356.32 | 9356.32 | 9356.32 | 9356.32 | 9356.32 |
2012 | 10933.09 | 11239.57 | 11255.45 | 10933.21 | 10933.09 | 11075.11 | 10930.53 |
2013 | 12670.14 | 12705.01 | 12724.68 | 12652.52 | 12671.85 | 12609.03 | 12709.37 |
2014 | 14598.11 | 14361.53 | 14385.7 | 14497.36 | 14459.23 | 14354.89 | 14462.04 |
2015 | 16284.50 | 16234.02 | 16263.54 | 16470.04 | 16373.96 | 16338.33 | 16419.66 |
2016 | 18574.50 | 18350.66 | 18386.50 | 18576.87 | 18459.00 | 18574.50 | 18576.58 |
2017 | 20906.70 | 20743.27 | 20786.59 | 20825.79 | 20747.80 | 21034.97 | 20881.84 |
2018 | 23231.19 | 23447.83 | 23499.97 | 23225.76 | 23271.43 | 23567.05 | 23231.19 |
拟合MAPE(%) | 0.99 | 0.96 | 0.30 | 0.38 | 0.73 | ||
2019 | 25376.38 | 26505.02 | 26567.54 | 25786.59 | 26061.32 | 25723.04 | 25469.14 |
2020 | 27338.56 | 29960.82 | 30035.54 | 28518.88 | 29150.68 | 26434.85 | 27411.18 |
预测MAPE(%) | 7.02 | 7.28 | 2.97 | 4.66 | 2.34 |
"
年份 | 原数据 | 弱化缓冲数据 | GM(1,1) | DGM(1,1) | 灰色幂模型 | 灰色时间幂模型 | DTGPM |
---|---|---|---|---|---|---|---|
2014 | 5.21 | 96.73 | 96.73 | 96.73 | 96.73 | 96.73 | 96.73 |
2015 | 17.84 | 109.81 | 90.41 | 91.62 | 109.81 | 111.27 | 109.60 |
2016 | 32.48 | 125.14 | 111.11 | 112.50 | 117.05 | 125.95 | 127.22 |
2017 | 54.96 | 143.67 | 136.55 | 138.14 | 137.24 | 142.61 | 141.32 |
2018 | 92.26 | 165.84 | 167.82 | 169.62 | 166.84 | 161.80 | 160.82 |
2019 | 104.04 | 190.37 | 206.25 | 208.26 | 206.56 | 185.60 | 193.81 |
2020 | 136.70 | 233.54 | 253.48 | 255.72 | 258.43 | 221.98 | 249.54 |
2021 | 350.00 | 350.00 | 311.52 | 313.99 | 325.41 | 297.04 | 339.14 |
MAPE(%) | / | / | 7.86 | 7.75 | 4.72 | 3.47 | |
2022E | / | / | 382.86 | 385.54 | 411.43 | 484.59 | 473.49 |
2023E | / | / | 470.53 | 473.39 | 521.58 | 969.27 | 654.81 |
2024E | / | / | 578.27 | 581.26 | 662.40 | 2169.51 | 859.99 |
2025E | / | / | 710.69 | 713.71 | 842.23 | 4960.87 | 1027.01 |
"
年份 | 原数据 | GM(1,1) | DGM(1,1) | 灰色幂模型 | 灰色时间幂模型 | DTGPM |
---|---|---|---|---|---|---|
2014 | 2486.0 | 2486.00 | 2486.00 | 2486.00 | 2486.00 | 2486.00 |
2015 | 2476.2 | 2729.63 | 2733.17 | 2476.20 | 2639.20 | 2469.78 |
2016 | 2786.9 | 2711.31 | 2713.64 | 2746.68 | 2717.32 | 2844.03 |
2017 | 2956.7 | 2693.11 | 2694.24 | 2839.11 | 2777.73 | 2901.24 |
2018 | 2816.3 | 2675.03 | 2674.98 | 2821.63 | 2810.54 | 2774.19 |
2019 | 2551.5 | 2657.08 | 2655.86 | 2735.18 | 2805.18 | 2612.96 |
2020 | 2531.1 | 2639.25 | 2636.87 | 2606.27 | 2750.48 | 2531.24 |
2021 | 2608.2 | 2621.53 | 2618.03 | 2452.67 | 2634.66 | 2594.33 |
MAPE(%) | / | 4.47 | 4.44 | 2.72 | 4.37 | |
2022E | / | 2603.94 | 2599.31 | 2286.50 | 2445.35 | 2825.64 |
2023E | / | 2586.46 | 2580.73 | 2116.05 | 2169.58 | 3217.96 |
2024E | / | 2569.10 | 2562.29 | 1946.96 | 1793.79 | 3744.78 |
2025E | / | 2551.86 | 2543.97 | 1782.97 | 1303.80 | 4371.22 |
1 | 王灿,张雅欣.碳中和愿景的实现路径与政策体系[J].中国环境管理,2020,12(6):58-64. |
Wang C, Zhang Y X. Implementation path and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020,12(6): 58-64. | |
2 | 唐葆君,马也.“十三五”北京市新能源汽车节能减排潜力[J].北京理工大学学报(社会科学版),2016,18(2):13-17. |
Tang B J, Ma Ye. Analysis of energy conservation and emission reduction of new energy vehicles in beijing during the “13th five year plan”[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2016,18(2): 13-17. | |
3 | 王从飞,曹锋,李明佳,等.碳中和背景下新能源汽车热管理系统研究现状及发展趋势[J].科学通报,2021,66(32):4112-4128. |
Wang C F, Cao F, Li M J, et al. Research status and development trend of thermal management systems for new energy vehicles in the context of carbon neutrality [J]. Chinese Science Bulletin, 2021,66(32): 4112-4128. | |
4 | 唐葆君,王翔宇,王彬,等.中国新能源汽车行业发展水平分析及展望[J].北京理工大学学报(社会科学版),2019,21(2):6-11. |
Tang B J, Wang X Y, Wang B, et al. Analysis and prospect of the development level of china's new energy vehicle industry[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2019,21(2): 6-11. | |
5 | 国务院. 新能源汽车产业发展规划(2021-2035年)[Z].2020. |
The State Council of China. Development plan for the new energy vehicle industry(2021-2035)[Z]. 2020. | |
6 | 李社宁,张哲,李喜宁.促进新能源汽车产业发展的可持续性财税政策探析[J].西安财经学院学报,2019,32(4):46-52. |
Li S N, Zhang Z, Li X N. Analysis of sustainable financial and tax policies to promote the development of new energy vehicle industry[J]. Journal of Xi'an University of Finance and Economics, 2019, 32(4): 46-52. | |
7 | 童芳,兰凤崇,陈吉清.新能源汽车发展影响因素分析及保有量预测[J].科技管理研究,2016,36(17):112-116. |
Tong F, Lan F C, Chen J Q. Analysis of factors influencing the development of new energy vehicles and prediction of ownership[J].Science and Technology Management Research, 2016,36(17): 112-116. | |
8 | 潘苏楠,李北伟,聂洪光.新能源汽车产业与美丽中国建设的耦合协调及前景预测研究[J].科技管理研究,2019,39(18):123-129. |
Pan S N, Li B W, Nie H G. Research on the coupling coordination and prospect prediction of the new energy vehicle industry and the construction of beautiful China[J]. Science and Technology Management Research, 2019, 39(18): 123-129. | |
9 | 方曦,张莉萍.国内外新能源汽车充电桩技术预测分析——基于生命周期和国际专利分类号[J].科技管理研究,2021,41(8):148-155. |
Fang X, Zhang L P. Prediction and analysis of new energy vehicle charging station technology at home and abroad-based on life cycle and international patent classification[J].Science and Technology Management Research, 2021,41(8): 148-155. | |
10 | 刘颖琦,王萌,王静宇.中国新能源汽车市场预测研究[J].经济与管理研究,2016,37(4):86-91. |
Liu Y Q, Wang M, Wang J Y. Research on the prediction of China's new energy vehicle market[J]. Research on Economics and Management, 2016,37 (4): 86-91. | |
11 | He L Y, Pei L L, Yang Y H. An optimised grey buffer operator for forecasting the production and sales of new energy vehicles in China[J]. Science of The Total Environment, 2020, 704: 135321. |
12 | Ding S, Li R, Wu S. A novel composite forecasting framework by adaptive data preprocessing and optimized nonlinear grey Bernoulli model for new energy vehicles sales[J]. Communications in Nonlinear Science and Numerical Simulation,2021,99:105847. |
13 | 罗党,王小雷.耦合三角函数的灰色GM(1,1,T)模型及其应用[J].系统工程理论与实践, 2020,40(7):1906-1917. |
Luo D, Wang X L. The grey GM(1,1, T) model of coupled triangular functions and its application[J]. Systems Engineering-Theory & Practice, 2020,40(7): 1906-1917. | |
14 | Wei B L, Xie N M. On unified framework for discrete-time grey models[J].ISA Transactions, 2020, 107:1-11. |
15 | 张鹏.引入新息项的离散灰色预测模型[J].统计与决策,2020,36(5):29-32. |
Zhang P. A discrete grey prediction model introducing new information items[J]. Statistics & Decision, 2020,36(5): 29-32. | |
16 | 王正新.GM(1,1)幂模型的派生模型[J].系统工程理论与实践,2013,33(11):2894-2902. |
Wang Z X. Derivative model of GM (1,1) power model[J]. Systems Engineering-Theory & Practice, 2013,33 (11): 2894-2902. | |
17 | Li N, Wang J, Wu L, Bentley Y. Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization[J].Energy, 2021,215:119118. |
18 | 叶莉莉,谢乃明,罗党.累积时滞非线性ATNDGM(1,N)模型构建及应用[J].系统工程理论与实践,2021,41(9):2414-2427. |
Ye L L, Xie N M, Luo D. Construction and application of the cumulative delay nonlinear ATNDGM (1, N) model[J]. Systems Engineering-Theory & Practice, 2021,41(9): 2414-2427. | |
19 | Guo X, Liu S, Yang Y. A prediction method for plasma concentration by using a nonlinear grey Bernoulli combined model based on a self-memory algorithm[J]. Computers in Biology and Medicine, 2019,105:81-91. |
20 | 夏杰,马新,吴文青.基于Simpson公式改进的FAGM(1,1)模型及其应用研究[J].中国管理科学,2021,29(5):240-248. |
Xia J, Ma X, Wu W Q. Research on the improved FAGM (1,1) model based on simpson formula and its application[J]. Chinese Journal of Management Science, 2021,29(5): 240-248. | |
21 | 王正新,党耀国,刘思峰,等.GM(1,1)幂模型求解方法及其解的性质[J].系统工程与电子技术,2009,31(10):2380-2383. |
Wang Z X, Dang Y G, Liu S F, et al. GM (1,1) power model solving method and properties of its solution[J]. Systems Engineering and Electronic Technology, 2009,31(10): 2380-2383. | |
22 | 罗友洪,陈友军.线性时变参数非等间距GM(1,1)幂模型及其应用[J].系统工程,2021,39(5):152-158. |
Luo Y H, Chen Y J. Linear time-varying parameter non equidistant GM (1,1) power model and its application[J]. Systems Engineering, 2021,39(5): 152-158. | |
23 | 周伟杰,姜慧敏,成雨珂,等.基于可重复性分数阶灰色时间幂模型的中国水电消费预测研究[J].中国管理科学,2023,31(5):279-286. |
Zhou W J, Jiang H M, Cheng Y K, et al. Research on china's hydropower consumption prediction based on repeatability fractional order grey time power model[J]. Chinese Journal of Management Science, 2023,31(5): 279-286. | |
24 | Liu C, Xie W, Wu W, et al. Predicting Chinese total retail sales of consumer goods by employing an extended discrete grey polynomial model[J]. Engineering Applications of Artificial Intelligence, 2021,102:104261. |
25 | 杨保华,赵金帅.优化离散灰色幂模型及其应用[J].中国管理科学,2016,24(2):162-168. |
Yang B H, Zhao J S. Optimization of discrete grey power model and its application[J]. Chinese Journal of Management Science, 2016,24(2): 162-168. | |
26 | 江建明,吴文泽,张涛.非线性离散灰色Bernoulli模型的构造与应用[J].统计与决策,2021,37(13):42-45. |
Jiang J M, Wu W Z, Zhang T. Construction and application of nonlinear discrete grey bernoulli model[J]. Statistics & Decision, 2021,37(13): 42-45. | |
27 | Liu L, Wu L F. Forecasting the renewable energy consumption of the European countries by an adjacent non-homogeneous grey model[J]. Applied Mathematical Modelling,2021,89:1932-1948. |
28 | 邹国焱,魏勇.新离散verhulst模型的建模机理及其优化[J].系统工程,2019,37(6):139-147. |
Zou G Y, Wei Y. Modeling mechanism and optimization of the new discrete verhulst model[J]. Systems Engineering, 2019,37(6): 139-147. | |
29 | Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7): 1775-1785. |
[1] | Shuliang Li,Shuangyi Yang,Bo Zeng,Wei Meng,Yun Bai. Unbiased and Adaptive of Discrete Grey Prediction Model and Its Application [J]. Chinese Journal of Management Science, 2024, 32(8): 149-158. |
[2] | XIE Jun-yang, LE Wei, GUO Ben-hai. Pareto Equilibrium of New Energy Vehicle Power Battery Recycling Based on Extended Producer Responsibility [J]. Chinese Journal of Management Science, 2022, 30(11): 309-320. |
[3] | HE Yuan, LE Wei, GUO Ben-hai. Research on the Policy Synergy of Central and Local Government on New Energy Vehicle Industry under the Perspective of Policy Field and Time Dimension [J]. Chinese Journal of Management Science, 2021, 29(5): 117-128. |
[4] | ZHANG Xue-feng, SONG Ge, YAN Yong. The Impact of Urban Low-carbon Transportation System on the Improvement of The Structure of Energy Consumption——Evidence from 14 Cities in China [J]. Chinese Journal of Management Science, 2020, 28(12): 173-183. |
[5] | ZHAO Hua, ZHENG Ji-chuan. The Impact of Different New Energy Vehicle Subsidy Policies on Market Stability [J]. Chinese Journal of Management Science, 2019, 27(9): 47-55. |
[6] | YANG Bao-hua, ZHAO Jin-shuai. Optimized Discrete Grey Power Model and Its Application [J]. Chinese Journal of Management Science, 2016, 24(2): 162-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|