Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (7): 24-32.doi: 10.16381/j.cnki.issn1003-207x.2023.1971
Previous Articles Next Articles
Ren Mu1,2, Lining Hao2, Ankang Li2, Shuyi Zhang3, Wei Cui2()
Received:
2023-11-23
Revised:
2024-05-30
Online:
2025-07-25
Published:
2025-08-06
Contact:
Wei Cui
E-mail:cuiwei@imut.edu.cn
CLC Number:
Ren Mu, Lining Hao, Ankang Li, Shuyi Zhang, Wei Cui. Group Ranking Data Envelopment Analysis Model[J]. Chinese Journal of Management Science, 2025, 33(7): 24-32.
"
决策单元 | CCR效率 | CCR排序 | 最高排序效率 | 最高排序 | 最低排序效率 | 最低排序 | 总体排序 |
---|---|---|---|---|---|---|---|
DMU1 | 0.57541 | 9 | 0.57414 | 3 | 0.03575 | 18 | 9 |
DMU2 | 1.00000 | 1 | 1.00000 | 1 | 0.12388 | 16 | 4 |
DMU3 | 0.36996 | 17 | 0.29179 | 8 | 0.08848 | 16 | 18 |
DMU4 | 0.44359 | 12 | 0.38993 | 4 | 0.14955 | 15 | 10 |
DMU5 | 0.36402 | 18 | 0.35521 | 5 | 0.13138 | 16 | 17 |
DMU6 | 0.40757 | 14 | 0.40337 | 4 | 0.28782 | 16 | 13 |
DMU7 | 0.53747 | 10 | 0.38832 | 4 | 0.13388 | 17 | 10 |
DMU8 | 1.00000 | 7 | 1.00000 | 1 | 0.06506 | 16 | 8 |
DMU9 | 0.37825 | 16 | 0.31664 | 4 | 0.18370 | 17 | 15 |
DMU10 | 1.00000 | 1 | 1.00000 | 1 | 0.16332 | 15 | 2 |
DMU11 | 0.43212 | 13 | 0.37775 | 4 | 0.07396 | 17 | 13 |
DMU12 | 1.00000 | 1 | 1.00000 | 1 | 0.09764 | 16 | 4 |
DMU13 | 1.00000 | 1 | 1.00000 | 1 | 0.42699 | 8 | 1 |
DMU14 | 1.00000 | 1 | 1.00000 | 1 | 0.00267 | 18 | 7 |
DMU15 | 1.00000 | 1 | 1.00000 | 1 | 0.04813 | 15 | 2 |
DMU16 | 1.00000 | 1 | 1.00000 | 1 | 0.28820 | 16 | 4 |
DMU17 | 0.37841 | 15 | 0.32242 | 6 | 0.05762 | 17 | 16 |
DMU18 | 0.50383 | 11 | 0.22858 | 3 | 0.02634 | 18 | 12 |
"
决策群组 | 驱动决策单元 | 最高排序 | 最高群组排序均值 | 最低排序 | 最低群组排序均值 |
---|---|---|---|---|---|
23,31,51 | 23 | 27 | 18.67 | 17 | 20.67 |
51 | 27 | 18.33 | 16 | 20.67 | |
31 | 32 | 17.67 | 14 | 19.67 | |
39,44,46 | 44 | 40 | 34.67 | 41 | 44.00 |
39 | 40 | 32.67 | 42 | 44.33 | |
46 | 35 | 32.67 | 42 | 44.33 | |
1,39,44 | 44 | 40 | 32.33 | 45 | 47.00 |
39 | 35 | 28.67 | 45 | 46.67 | |
1 | 40 | 31.00 | 47 | 47.00 | |
1,2,44 | 44 | 35 | 21.00 | 48 | 49.67 |
2 | 35 | 21.00 | 48 | 49.67 | |
1 | 35 | 21.00 | 48 | 49.67 | |
1,2,4 | 4 | 40 | 24.67 | 41 | 47.33 |
2 | 41 | 23.00 | 40 | 46.33 | |
1 | 41 | 23.00 | 40 | 47.33 |
[1] | Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978,2(6):429-444. |
[2] | Muren, Liu C, Cui W. The relationships among group decision making units based on partial ordered set[J]. Computers & Industrial Engineering, 2023,179:109173. |
[3] | Wu J, Chu J, Sun J, et al. DEA cross-efficiency evaluation based on Pareto improvement[J]. European Journal of Operational Research, 2016,248(2):571-579. |
[4] | Andersen P, Petersen N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management science, 1993,39(10):1261-1264. |
[5] | 邓雪, 方雯. 基于DEA博弈交叉效率和投资者心理的模糊投资组合研究[J]. 运筹与管理, 2022,31(10):68-74. |
Deng X, Fang W. Research on fuzzy portfolios based on DEA game cross-efficiency method and investor psychology [J]. Operations Research and Management Science, 2022,31(10):68-74. | |
[6] | 吴澎, 丁毅, 周礼刚, 等. 基于DEA交叉效率与冗余信息识别的大群体应急决策方法[J]. 系统工程理论与实践, 2022,42(10):2840-2852. |
Wu P, Ding Y, Zhou L G, et al. Large group emergency decision-making method based on DEA cross-efficiency and redundant information identification[J]. Systems Engineering-Theory & Practice, 2022,42(10):2840-2852. | |
[7] | 梁晓星, 周志翔. 考虑城市群间竞争与合作关系的环境效率评价研究:基于交叉效率评价模型(英文)[J]. 中国科学技术大学学报, 2022,52(4):17-27+68. |
Liang X X, Zhou Z X. Cooperation and competition among urban agglomerations in environmental efficiency measurement: A cross-efficiency approach[J]. Journal of University of Science and Technology of China, 2022,52(4):17-27+68. | |
[8] | 郑兵云, 杨宏丰. “一带一路”中国沿海城市港口效率评价——基于DEA博弈交叉效率-Tobit模型[J]. 数理统计与管理, 2021,40(3):502-514. |
Zheng B Y, Yang H F. Evaluation of port efficiency of China’s coastal cities in “the belt and road”:Based on DEA game crossover efficiency-Tobit model[J]. Journal of Applied Statistics and Management, 2021,40(3):502-514. | |
[9] | 薛凯丽, 范建平, 匡海波, 等. 基于两阶段交叉效率模型的中国商业银行效率评价[J]. 中国管理科学, 2021,29(10):23-34. |
Xue K L, Fan J P, Kuang H B, et al. Efficiency evaluation of China commercial banks based on two-stage cross efficiency model[J]. Chinese Journal of Management Science, 2021,29(10):23-34. | |
[10] | 程国庆, 王应明. 基于三阶段DEA交叉效率模型的决策单元排序与聚类——基于中国集体所有制建筑业企业效率的实证分析[J]. 系统科学与数学, 2020,40(12):2416-2430. |
Cheng G Q, Wang Y M. Research on decision unit ordering and clustering based on three-stage DEA cross-efficiency model for China’s collectively owned construction enterprises[J]. Journal of Systems Science and Mathematical Sciences, 2020,40(12):2416-2430. | |
[11] | Banker R D. A game theoretic approach to measuring efficiency[J].European Journal of Operational Research, 1980,5(4):262-266. |
[12] | 程幼明, 姚丽, 何惠妍, 等. 一种考虑DMU间交叉竞争的博弈效率DEA评价方法[J]. 控制与决策, 2018,33(9):1677-1685. |
Cheng Y M, Yao L, He H Y, et al. An evaluation method for DEA game efficiency considering cross-competition game of DMUs[J]. Control and Decision, 2018,33(9):1677-1685. | |
[13] | 木仁, 唐格斯, 曹莉, 等. 基于博弈理论的广义模糊数据包络分析方法[J]. 内蒙古大学学报(自然科学版), 2020,51(3):268-278. |
Mu R, Tang G S, Cao L, et al. Generalized fuzzy data envelopment analysis method based on game theory[J]. Journal of Inner Mongolia University (Natural Science Edition), 2020,51(3):268-278. | |
[14] | Ramezani-Tarkhorani S, Khodabakhshi M, Mehrabian S, et al. Ranking decision-making units using common weights in DEA[J]. Applied Mathematical Modelling, 2014,38(15-16):3890-3896. |
[15] | 蓝以信, 温槟檐, 王应明. 基于公共权重的区间DEA效率评价及其排序方法研究[J]. 运筹学学报, 2021,25(4):58-68. |
Lan Y X, Wen B Y, Wang Y M. A common-weights interval DEA approach for efficiency evaluation and its ranking method[J]. Operations Research Transactions, 2021,25(4):58-68. | |
[16] | 熊文涛, 冯育强, 雍龙泉. 基于公共权重和理想决策单元的DEA排序方法[J]. 系统工程, 2016,34(3):124-128. |
Xiong W T, Feng Y Q, Yong L Q. A method for ranking decision making units by common set of weights and ideal decision making unit in DEA[J]. Systems Engineering, 2016,34(3):124-128. | |
[17] | Ruiz J L, Sirvent I. Common benchmarking and ranking of units with DEA[J]. Omega, 2016,65:1-9. |
[18] | 马生昀, 马占新. 基于样本前沿面移动的广义DEA有效性排序[J]. 系统工程学报,2014,29(4):443-457. |
Ma S Y, Ma Z X. Ranking of generalized DEA efficiency based on the moving of sample frontier[J]. Journal of Systems Engineering, 2014,29(4):443-457. | |
[19] | Muren, Liu C, Cui W, et al. Special relationship among decision making units based on partially ordered set and new evaluation and projection methods[J]. Journal of Systems Science and Systems Engineering, 2022,31(2):226-246. |
[20] | Rouyendegh B D, Oztekin A, Ekong J, et al. Measuring the efficiency of hospitals: A fully-ranking DEA-FAHP approach[J]. Annals of Operations Research, 2019,278(1):361-378. |
[21] | 卞亦文, 许皓.基于虚拟包络面和TOPSIS的DEA排序方法[J].系统工程理论与实践, 2013,33(2):482-488. |
Bian Y W, Xu H. DEA ranking method based upon virtual envelopment frontier and TOPSIS[J].Systems Engineering-Theory & Practice,2013,33(2):482-488. | |
[22] | Ali Rakhshan S. Efficiency ranking of decision making units in data envelopment analysis by using TOPSIS-DEA method[J]. Journal of the Operational Research Society, 2017,68(8):906-918. |
[23] | Salo A, Punkka A. Ranking intervals and dominance relations for ratio-based efficiency analysis[J]. Management Science, 2011, 57(1): 200-214. |
[24] | de Farias Aires R F, Ferreira L. The rank reversal problem in multi-criteria decision making: A literature review[J].Pesquisa Operacional,2018,38(2): 331-362. |
[25] | Kadziński M, Labijak A, Napieraj M. Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports[J]. Omega, 2017, 67: 1-18. |
[26] | Labijak-Kowalska A, Kadziński M. Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis[J]. Operational Research, 2023, 23(1): 22. |
[27] | Li F, Yan Z, Zhu Q, et al. Allocating a fixed cost across decision making units with explicitly considering efficiency rankings[J]. Journal of the Operational Research Society, 2021, 72(6): 1432-1446. |
[28] | Chen L, Guo M, Li Y, et al. Efficiency intervals, rank intervals and dominance relations of decision-making units with fixed-sum outputs[J]. European Journal of Operational Research, 2021, 292(1): 238-249. |
[29] | Li Y, Shi X, Emrouznejad A, et al. Ranking intervals for two-stage production systems[J]. Journal of the Operational Research Society, 2020,71(2): 209-224. |
[30] | Lei X, Li Y, Morton A. Dominance and ranking interval in DEA parallel production systems[J]. OR Spectrum, 2022, 44(2): 649-675. |
[31] | Chu J, Wei F, Wu J, et al. Selecting common projection direction in DEA directional distance function based on directional extensibility[J]. Computers & Industrial Engineering, 2021,154:107105. |
[1] | Shuya Yan, Guotao Yang, Xun Liang, Zhenyu Guan, Ziyan Liu. Comprehensive Efficiency Evaluation of China’s Economic Development Quality Based on Parallel Two-stage Network DEA Model [J]. Chinese Journal of Management Science, 2025, 33(7): 139-150. |
[2] | Zhanxin Ma, guga Suri. Study of DEA-Malmquist Index Method Based on Frontier Surface Modification [J]. Chinese Journal of Management Science, 2025, 33(3): 118-127. |
[3] | Yao Wen, Qingxian An, Yongli Li. Cost DEA Game and Cost Allocation Method Considering the Relative Competitiveness of Decision-making Units [J]. Chinese Journal of Management Science, 2025, 33(2): 71-83. |
[4] | Guangyu Wan,Feiyan Pu,Zichun Li,Yu Cao. Impact of Marketing Capability and Production Operation Capability on Firms' Financial Performance [J]. Chinese Journal of Management Science, 2024, 32(5): 275-285. |
[5] | ZHOU Zhen, JIAN Hong-yu, HUANG Jia-pei, LIN Yun. The Influence of E-marketing on Cinema Performance Based on DEA and Grey Entropy [J]. Chinese Journal of Management Science, 2023, 31(5): 240-248. |
[6] | Qian-zhi DAI,Xiao-chi XU,Xi-yang LEI,Qian ZHAO. Cost Compensation Method for Incentives Based on Dynamic Non-cooperative Game and Super-efficiency DEA [J]. Chinese Journal of Management Science, 2023, 31(12): 185-192. |
[7] | Yan HUANG,Li-ye CHEN,Nan WU,Ying-ming WANG,Yong-wu DAI. Study on Interval Benchmarking Based on Efficiency Compensation Mechanism——Taking Forest Carbon Sink Efficiency as An Example [J]. Chinese Journal of Management Science, 2023, 31(12): 317-328. |
[8] | Feng LI,Yue WANG,Liang LIANG,Gang KOU. A Two-stage Data Envelopment Analysis Approach for Evaluating Decision-making Units with Fixed-sum Shared Outputs [J]. Chinese Journal of Management Science, 2023, 31(11): 268-278. |
[9] | Xiao-lei WANG,Ren MU,Li ZHOU,Jin-quan DONG. An Evaluation Method of Input-output Performance of Decision Making Units Considering Efficiency and Effect [J]. Chinese Journal of Management Science, 2023, 31(10): 128-135. |
[10] | LI Mei-juan, , LU Jin-cheng. A New Cross-efficiency Evaluation Method Based on Double Frontier and Its Application [J]. Chinese Journal of Management Science, 2023, 31(1): 168-175. |
[11] | REN Teng, LI Shu-xuan, ZHOU Zhong-bao, LI Si-di, XIAO He-lu. Study on Efficiency Evaluation of Regional Sustainable Development System Based on BLP-DEA and Satisfaction Degree [J]. Chinese Journal of Management Science, 2022, 30(7): 99-109. |
[12] | DU Juan, PAN Meng, WANG Yun-feng. Disaggregating China’s National Carbon-reduction Target Based on Optimizing the Total Cost of Emission Reduction [J]. Chinese Journal of Management Science, 2022, 30(7): 252-263. |
[13] | LIU Chuan-bin, DAI Wei, YU Le-an, YANG Jian-an. Study on Evaluation and Prediction of Scientific Research Platforms of Universities using a GCA-DEA-MSVC Methodology [J]. Chinese Journal of Management Science, 2022, 30(3): 240-247. |
[14] | WANG Mei-qiang, HUANG Yang. A Neutral Two-stage Cross-efficiency Evaluation Approach [J]. Chinese Journal of Management Science, 2022, 30(11): 229-238. |
[15] | WANG Xu, WANG Ying-ming, WANG Liang, LAN Yi-xin, ZHANG Xing-xian. Study on Cross-efficiency Ranking Based on Evidential Reasoning and Prospect Theory [J]. Chinese Journal of Management Science, 2022, 30(11): 250-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|