Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (2): 61-70.doi: 10.16381/j.cnki.issn1003-207x.2022.1541
Previous Articles Next Articles
Shijia Song, Fei Tian, Handong Li()
Received:
2022-07-14
Revised:
2022-09-27
Online:
2025-02-25
Published:
2025-03-06
Contact:
Handong Li
E-mail:lhd@bnu.edu.cn
CLC Number:
Shijia Song, Fei Tian, Handong Li. VaR Prediction Model Based on Time-varying Extremum Method and Its Application[J]. Chinese Journal of Management Science, 2025, 33(2): 61-70.
"
标准差 | 偏度 | 超额峰度 | ADF检验 | 长记忆性检验 | ARCH检验 | |||
---|---|---|---|---|---|---|---|---|
Dickey-Fuller | p值 | Q(50) | p值 | Q(12) | p值 | |||
0.01600 | 0.58884 | 4.98347 | -13.9433 | <0.01 | 117.55 | 2.3e-7 | 942.03 | <2.2e-16 |
0.01719 | 0.50860 | 4.08856 | -13.6651 | <0.01 | 116.02 | 3.64e-7 | 955.14 | <2.2e-16 |
0.01851 | 0.54212 | 3.20490 | -13.8522 | <0.01 | 93.82 | 1.7e-4 | 834.07 | <2.2e-16 |
0.00051 | -2.58332 | 9.94920 | -6.1042 | 0.01 | 1063.2 | <2.2e-16 | 845.06 | <2.2e-16 |
0.00056 | -2.60152 | 13.05188 | -7.2052 | 0.01 | 550.31 | <2.2e-16 | 395.07 | <2.2e-16 |
"
99.50% | 99% | 98% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
指数 | 模型 | |||||||||
上证指数 | ARFIMA-RGARCH | 0.0021 | 0.0086 | 0.0024 | 0.031 | 0.0754 | 0.0097 | 0.6031 | 0.8432 | 0.412 |
ARFIMA-RGARCH-DPOT | 0.2932 | 0.545 | 0.998 | 0.7792 | 0.732 | 0.998 | 0.4044 | 0.6993 | 0.252 | |
HEAVY | 0.0001 | 0.0002 | 0.123 | 0.0023 | 0.0045 | 0.2344 | 0.2336 | 0.3466 | 0.7796 | |
沪深300 | ARFIMA-RGARCH | 0.0106 | 0.0144 | 0.0001 | 0.0617 | 0.1501 | 0.0101 | 0.4011 | 0.6832 | 0.1988 |
ARFIMA-RGARCH-DPOT | 0.0889 | 0.192 | 0.8923 | 0.2034 | 0.1992 | 0.2002 | 0.411 | 0.701 | 0.5798 | |
HEAVY | 0.0002 | 0.0003 | 0.7765 | 0.0055 | 0.0068 | 0.7965 | 0.3345 | 0.4565 | 0.663 | |
深证成指 | ARFIMA-RGARCH | 0.052 | 0.0535 | 0.0002 | 0.0329 | 0.1103 | 0.0419 | 0.3206 | 0.5324 | 0.16 |
ARFIMA-RGARCH-DPOT | 0.2012 | 0.355 | 0.9998 | 0.398 | 0.4823 | 0.543 | 0.654 | 0.7312 | 0.0472 | |
HEAVY | 0.0002 | 0.0004 | 0.8773 | 0.0095 | 0.0122 | 0.6445 | 0.2232 | 0.543 | 0.6635 | |
标普500 | ARFIMA-RGARCH | 0.0432 | 0.0342 | 0.0001 | 0.0278 | 0.0678 | 0.0564 | 0.3445 | 0.4201 | 0.187 |
ARFIMA-RGARCH-DPOT | 0.3321 | 0.4523 | 0.6379 | 0.2679 | 0.298 | 0.4023 | 0.3187 | 0.4326 | 0.5889 | |
HEAVY | 0.0102 | 0.0203 | 0.7793 | 0.0432 | 0.0504 | 0.7793 | 0.2245 | 0.2987 | 0.988 | |
纳斯达克 | ARFIMA-RGARCH | 0.0498 | 0.0431 | 0.0001 | 0.0673 | 0.0886 | 0.0587 | 0.3024 | 0.3637 | 0.1662 |
ARFIMA-RGARCH-DPOT | 0.3014 | 0.4983 | 0.6325 | 0.3797 | 0.3079 | 0.4565 | 0.3668 | 0.4236 | 0.8024 | |
HEAVY | 0.0153 | 0.0288 | 0.8556 | 0.0432 | 0.0504 | 0.694 | 0.2663 | 0.323 | 0.988 | |
97% | 96% | 95% | ||||||||
指数 | 模型 | |||||||||
上证指数 | ARFIMA-RGARCH | 0.861 | 0.522 | 0.6789 | 0.5202 | 0.455 | 0.823 | 0.11 | 0.0751 | 0.6014 |
ARFIMA-RGARCH-DPOT | 0.5798 | 0.5408 | 0.554 | 0.6985 | 0.8876 | 0.4435 | 0.8123 | 0.8456 | 0.389 | |
HEAVY | 0.532 | 0.5543 | 0.6233 | 0.7732 | 0.7963 | 0.9445 | 0.779 | 0.8996 | 0.988 | |
沪深300 | ARFIMA-RGARCH | 0.686 | 0.423 | 0.154 | 0.412 | 0.4088 | 0.4102 | 0.1616 | 0.3128 | 0.4123 |
ARFIMA-RGARCH-DPOT | 0.802 | 0.5094 | 0.9473 | 0.556 | 0.6987 | 0.654 | 0.843 | 0.5998 | 0.2115 | |
HEAVY | 0.663 | 0.6998 | 0.8864 | 0.7749 | 0.856 | 0.7855 | 0.793 | 0.8865 | 0.9554 | |
深证成指 | ARFIMA-RGARCH | 0.3201 | 0.5981 | 0.2885 | 0.6932 | 0.7533 | 0.6102 | 0.3284 | 0.6155 | 0.2102 |
ARFIMA-RGARCH-DPOT | 0.8043 | 0.5034 | 0.3324 | 0.7887 | 0.6884 | 0.269 | 0.755 | 0.8235 | 0.0055 | |
HEAVY | 0.8445 | 0.897 | 0.6659 | 0.6885 | 0.7232 | 0.554 | 0.8974 | 0.8225 | 0.9554 | |
标普500 | ARFIMA-RGARCH | 0.2993 | 0.312 | 0.3224 | 0.5023 | 0.5864 | 0.455 | 0.566 | 0.5889 | 0.586 |
ARFIMA-RGARCH-DPOT | 0.432 | 0.4558 | 0.5664 | 0.5885 | 0.6985 | 0.8565 | 0.6639 | 0.553 | 0.1545 | |
HEAVY | 0.663 | 0.6998 | 0.9045 | 0.7325 | 0.7885 | 0.897 | 0.7795 | 0.72 | 0.8765 | |
纳斯达克 | ARFIMA-RGARCH | 0.3125 | 0.3326 | 0.266 | 0.5568 | 0.6332 | 0.668 | 0.5021 | 0.5212 | 0.498 |
ARFIMA-RGARCH-DPOT | 0.4565 | 0.4698 | 0.733 | 0.6125 | 0.7025 | 0.7665 | 0.512 | 0.6645 | 0.1443 | |
HEAVY | 0.5435 | 0.6375 | 0.9045 | 0.7732 | 0.798 | 0.8856 | 0.798 | 0.856 | 0.988 |
"
99.5% | 99% | 98.5% | 98% | 97.5% | ||
---|---|---|---|---|---|---|
指数 | 模型 | 排序 | 排序 | 排序 | 排序 | 排序 |
上证指数 | ARFIMA-RGARCH-DPOT | 1 | 1 | 1 | 1 | 1 |
ARFIMA-RGARCH | 淘汰2 | 淘汰2 | 淘汰2 | 淘汰2 | 淘汰2 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.012 | 0.032 | 0.055 | 0.02 | 0.068 | ||
沪深300 | ARFIMA-RGARCH-DPOT | 1 | 1 | 1 | 1 | 1 |
ARFIMA-RGARCH | 2 | 淘汰2 | 淘汰2 | 淘汰2 | 淘汰2 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.0206 | 0.079 | 0.0604 | 0.0584 | 0.062 | ||
深证成指 | ARFIMA-RGARCH-DPOT | 1 | 1 | 1 | 1 | 1 |
ARFIMA-RGARCH | 淘汰2 | 淘汰2 | 淘汰2 | 2 | 淘汰2 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.182 | 0.083 | 0.025 | 0.012 | 0.01 | ||
标普500 | ARFIMA-RGARCH-DPOT | 1 | 1 | 1 | 1 | 1 |
ARFIMA-RGARCH | 2 | 淘汰2 | 淘汰2 | 2 | 淘汰2 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.037 | 0.014 | 0.22 | 0.048 | 0.064 | ||
纳斯达克 | ARFIMA-RGARCH-DPOT | 1 | 1 | 1 | 1 | 1 |
ARFIMA-RGARCH | 淘汰2 | 淘汰2 | 淘汰2 | 淘汰2 | 淘汰2 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.066 | 0.146 | 0.087 | 0.014 | 0.255 | ||
97% | 96.5% | 96% | 95.5% | 95% | ||
指数 | 模型 | 排序 | 排序 | 排序 | 排序 | 排序 |
上证指数 | ARFIMA-RGARCH-DPOT | 1 | 2 | 2 | 淘汰2 | 淘汰2 |
ARFIMA-RGARCH | 淘汰2 | 1 | 1 | 1 | 1 | |
HEAVY | 淘汰3 | 3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.014 | 0.6336 | 0.0362 | 0.0426 | 0.0093 | ||
沪深300 | ARFIMA-RGARCH-DPOT | 1 | 2 | 2 | 淘汰2 | 淘汰2 |
ARFIMA-RGARCH | 淘汰2 | 1 | 1 | 1 | 1 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.054 | 0.2388 | 0.0109 | 0.034 | 0.024 | ||
深证成指 | ARFIMA-RGARCH-DPOT | 1 | 1 | 2 | 2 | 2 |
ARFIMA-RGARCH | 淘汰2 | 2 | 1 | 1 | 1 | |
HEAVY | 淘汰3 | 3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.04 | 0.0388 | 0.0235 | 0.027 | 0.0197 | ||
标普500 | ARFIMA-RGARCH-DPOT | 1 | 2 | 2 | 2 | 2 |
ARFIMA-RGARCH | 2 | 1 | 1 | 1 | 1 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.028 | 0.014 | 0.048 | 0.015 | 0.007 | ||
纳斯达克 | ARFIMA-RGARCH-DPOT | 1 | 2 | 2 | 2 | 淘汰2 |
ARFIMA-RGARCH | 淘汰2 | 1 | 1 | 1 | 1 | |
HEAVY | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | 淘汰3 | |
0.102 | 0.025 | 0.034 | 0.038 | 0.156 |
1 | Basle Committee on Banking Supervision. Amendment to the capital accord to incorporate market risks[R]. Working Paper, Basle Committee on Banking Supervision, 1996. |
2 | Berkowitz J, O'Brien J. How accurate are value-at-risk models at commercial banks?[J]. The Journal of Finance, 2002, 57(3): 1093-1111. |
3 | Kole E, Markwat T, Opschoor A, et al. Forecasting value-at-risk under temporal and portfolio aggregation[J]. Journal of Financial Econometrics, 2017, 15(4): 649-677. |
4 | Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905. |
5 | Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics, 2001, 61(1): 43-76. |
6 | Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized exchange rate volatility[J]. Journal of the American Statistical Association, 2001, 96(453): 42-55. |
7 | Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2002, 64(2): 253-280. |
8 | Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2): 579-625. |
9 | Koopman S J, Jungbacker B, Hol E. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements[J]. Journal of Empirical Finance, 2005, 12(3): 445-475. |
10 | Martens M, van Dijk D, de Pooter M. Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements[J]. International Journal of Forecasting, 2009, 25(2): 282-303. |
11 | Engle R F, Gallo G M. A multiple indicators model for volatility using intra-daily data[J]. Journal of Econometrics, 2006, 131(1): 3-27. |
12 | Shephard N, Sheppard K. Realizing the future: Forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics, 2010, 25(2): 197-231. |
13 | Noureldin D, Shephard N, Sheppard K. Multivariate high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics, 2012, 27(6): 907-933. |
14 | Hansen P R, Huang Z, Shek H H. Realized GARCH: A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906. |
15 | Hansen P R, Lunde A, Voev V. Realized beta GARCH: A multivariate GARCH model with realized measures of volatility[J]. Journal of Applied Econometrics, 2014, 29(5): 774-799. |
16 | Sharma P, Vipul. Forecasting stock market volatility using realized GARCH model: International evidence[J]. The Quarterly Review of Economics and Finance, 2016, 59: 222-230. |
17 | Contino C, Gerlach R H. Bayesian tail-risk forecasting using realized GARCH[J]. Applied Stochastic Models in Business and Industry, 2017, 33(2): 213-236. |
18 | Huang Z, Wang T, Hansen P R. Option pricing with the realized GARCH model: An analytical approximation approach[J]. Journal of Futures Markets, 2017, 37(4): 328-358. |
19 | Wu X, Xia M, Zhang H. Forecasting VaR using realized EGARCH model with skewness and kurtosis[J]. Finance Research Letters, 2020, 32: 101090. |
20 | Xie H, Yu C. Realized GARCH models: Simpler is better[J]. Finance Research Letters, 2020, 33: 101221. |
21 | Daníelsson J, de Vries C G. Tail index and quantile estimation with very high frequency data[J]. Journal of Empirical Finance, 1997, 4(2): 241-257. |
22 | Longin F M. From value at risk to stress testing: The extreme value approach[J]. Journal of Banking & Finance, 2000, 24(7): 1097-1130. |
23 | Diebold F X, Schuermann T, Stroughair J D. Pitfalls and opportunities in the use of extreme value theory in risk management[J]. The Journal of Risk Finance, 2000, 1(2): 30-35. |
24 | McNeil A J, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach[J]. Journal of Empirical Finance, 2000, 7(3): 271-300. |
25 | Hansen B E. Autoregressive conditional density estimation[J]. International Economic Review, 1994, 35(3): 705-730. |
26 | Harvey C R, Siddique A. Autoregressive conditional skewness[J]. The Journal of Financial and Quantitative Analysis, 1999, 34(4): 465-487. |
27 | Bandi F M, Renò R. Time-varying leverage effects[J]. Journal of Econometrics, 2012, 169(1): 94-113. |
28 | Bollerslev T, Todorov V. Estimation of jump tails[J]. Econometrica, 2011, 79(6): 1727-1783. |
29 | Bee M, Dupuis D J, Trapin L. Realized peaks over threshold: A time-varying extreme value approach with high-frequency-based measures[J]. Journal of Financial Econometrics, 2019, 17(2): 254-283. |
30 | Balkema A A, de Haan L. Residual life time at great age[J]. The Annals of Probability, 1974, 2(5): 792-804. |
31 | Pickands J. Statistical inference using extreme order statistics[J]. The Annals of Statistics, 1975, 3(1): 119-131. |
32 | Davison A C, Smith R L. Models for exceedances over high thresholds[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1990, 52(3): 393-425. |
33 | Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 73-84. |
34 | Christoffersen P F. Evaluating interval forecasts[J]. International Economic Review, 1998, 39(4): 841-862. |
35 | Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business & Economic Statistics, 2004, 22(4): 367-381. |
36 | Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. |
37 | Bernardi M, Catania L. The model confidence set package for R[J]. International Journal of Computational Economics and Econometrics, 2018, 8(2): 144-158. |
38 | Poirier D J. Piecewise regression using cubic spline[J]. Journal of the American Statistical Association, 1973, 68(343): 515-524. |
39 | Harvey A, Koopman S J. Forecasting hourly electricity demand using time-varying splines[J]. Journal of the American Statistical Association, 1993, 88(424): 1228-1236. |
40 | Christensen K, Podolskij M. Realized range-based estimation of integrated variance[J]. Journal of Econometrics, 2007, 141(2): 323-349. |
[1] | Yifan Xiong. Heterogeneous Network Games with Multiple Activities [J]. Chinese Journal of Management Science, 2024, 32(5): 265-274. |
[2] | Qiang Fu,Zelong Shi. Research on Frequency of the Joint Network Connectedness of Systemic Financial Risks in China ——Based on the Locally Stationary Non-parametric Time-varying Vector HAR Model [J]. Chinese Journal of Management Science, 2024, 32(2): 1-10. |
[3] | Xinyue Zhang,Peng Jin,Xiaoxuan Hu,Moning Zhu. Research on the Time-dependent Multi-depot Open Vehicle Routing Problem with Time Windows [J]. Chinese Journal of Management Science, 2024, 32(1): 146-157. |
[4] | De-jian YU,Li-bo SHENG,Deng-feng LI. Research on Knowledge Diffusion of Closed-Loop Supply Chain Domain: A Main Path Analysis [J]. Chinese Journal of Management Science, 2023, 31(12): 138-148. |
[5] | LIANG Chao, WEI Yu, MA Feng, LI Xia-fei. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods [J]. Chinese Journal of Management Science, 2022, 30(4): 30-41. |
[6] | MOU Jin-jin, CHEN Ju-wei, WANG Shu-yun. Optimization Model of Cold Accumulated Multi-temperature Joint Pickup and Distribution [J]. Chinese Journal of Management Science, 2022, 30(10): 236-246. |
[7] | PU Xu-jin, LI Xiu-feng. Multi-objective Low Carbon MDVRP Optimization Based on E-commerce Commitment Delivery Mechanism [J]. Chinese Journal of Management Science, 2021, 29(8): 57-66. |
[8] | LI Chuang, YE Lulu, WANG Liping. The Influence of New Energy Vehicle Consumption Promotion Policy on the Purchase Intention of Potential Consumers [J]. Chinese Journal of Management Science, 2021, 29(10): 151-164. |
[9] | XU Dong-yang, LI Kun-peng, CUI Li-gang, TIAN Qian-nan. Multi-commodity Unpaired Supply-demandand Split Pickup and Delivery Vehicle Routing Problem with Multi-depot and Multi-type Trucks [J]. Chinese Journal of Management Science, 2021, 29(1): 127-137. |
[10] | SHEN Gen-xiang, ZOU Xin-yue. Identification and Measurement of Leverage Effects Using Local Correlation and Truncated Distorted Mix Copula Constructing [J]. Chinese Journal of Management Science, 2020, 28(7): 68-76. |
[11] | XU Cheng-lei, ZHAO Chen-fang, DUAN Wan-chun. Coordinated Acquisition of Trust Elements and Evolution of Potential in Low Molecular Decision-making Subjects [J]. Chinese Journal of Management Science, 2020, 28(5): 176-188. |
[12] | ZHAO Hua, XIAO Jia-wen. Volatility Forecasting in the Presence of Microstructure Noise and Measurement Error [J]. Chinese Journal of Management Science, 2020, 28(4): 48-60. |
[13] | LIU Jia-guo, WANG Jun-jin, ZHOU Jin-xia, LIU Fan. Research on Supply Chain Contract Coordination of Different Replenishment Strategies under Uncertain Environment [J]. Chinese Journal of Management Science, 2019, 27(9): 68-79. |
[14] | SHEN Gen-xiang, ZOU Xin-yue. GAS-HEAVY Model for Realized Measures of Volatility and Returns [J]. Chinese Journal of Management Science, 2019, 27(1): 1-10. |
[15] | WANG Jiang-tao, ZHOU Yong. Bandwidth Selection for Kernel Estimator of Spot Volatility in High Frequency data and Algorithm Design [J]. Chinese Journal of Management Science, 2018, 26(7): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|