Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (10): 146-155.doi: 10.16381/j.cnki.issn1003-207x.2021.1831
Previous Articles Next Articles
Received:
2021-09-08
Revised:
2022-01-06
Online:
2024-10-25
Published:
2024-11-09
Contact:
Hui Li
E-mail:lihui@cufe.edu.cn
CLC Number:
Hui Li,Xi Wang,Zhiya Zuo. Multi-objective Integrated Optimization of Flexible Resource Allocation and Scheduling in the Aerospace Production Workshop[J]. Chinese Journal of Management Science, 2024, 32(10): 146-155.
"
算例 | 工序总数 | 超期时间 (天) | 总成本 (千元) | 资源投入数量 |
---|---|---|---|---|
1 | 200 | 16 | 1911 | 47 |
113 | 1893 | 45 | ||
89 | 1900 | 36 | ||
2 | 221 | 5 | 2823 | 46 |
126 | 2796 | 47 | ||
44 | 2809 | 37 | ||
3 | 238 | 4 | 3339 | 46 |
95 | 3319 | 46 | ||
96 | 3331 | 35 | ||
4 | 262 | 0 | 3881 | 47 |
86 | 3861 | 45 | ||
23 | 3881 | 38 | ||
5 | 282 | 0 | 3901 | 42 |
43 | 3889 | 48 | ||
80 | 3907 | 37 | ||
6 | 300 | 0 | 4229 | 43 |
48 | 4219 | 52 | ||
226 | 4228 | 39 | ||
7 | 314 | 0 | 4308 | 44 |
98 | 4302 | 51 | ||
15 | 4324 | 37 | ||
8 | 345 | 0 | 4470 | 42 |
20 | 4453 | 47 | ||
56 | 4465 | 40 | ||
9 | 362 | 0 | 4536 | 51 |
58 | 4531 | 47 | ||
44 | 4546 | 40 | ||
10 | 401 | 0 | 4950 | 46 |
78 | 4940 | 53 | ||
278 | 4954 | 39 | ||
11 | 416 | 0 | 5471 | 45 |
109 | 5466 | 52 | ||
16 | 5485 | 41 |
"
算例 | 工序 总数 | A: IMODE B: NSGA-Ⅱ | A: IMODE B: MOPSO | A: NSGA-Ⅱ B: MOPSO | IGD | |||||
---|---|---|---|---|---|---|---|---|---|---|
C(A,B) | C(B,A) | C(A,B) | C(B,A) | C(A,B) | C(B,A) | IMODE | NSGA-Ⅱ | MOPSO | ||
1 | 200 | 0.892768 | 0.000000 | 0.485149 | 0.000000 | 0.297030 | 0.446384 | 0.014751 | 0.023054 | 0.032566 |
2 | 221 | 0.927374 | 0.000000 | 0.650000 | 0.000000 | 0.166667 | 0.505587 | 0.013363 | 0.028650 | 0.027697 |
3 | 238 | 0.994475 | 0.000000 | 0.583333 | 0.000000 | 0.250000 | 0.078729 | 0.014245 | 0.044035 | 0.058596 |
4 | 262 | 0.944112 | 0.000000 | 0.413793 | 0.000000 | 0.146552 | 0.057884 | 0.021410 | 0.046133 | 0.041833 |
5 | 282 | 1.000000 | 0.000000 | 0.404762 | 0.000000 | 0.285714 | 0.000000 | 0.017126 | 0.043978 | 0.065493 |
6 | 300 | 0.894428 | 0.000000 | 0.546763 | 0.000000 | 0.287770 | 0.388563 | 0.025469 | 0.037573 | 0.026460 |
7 | 314 | 1.000000 | 0.000000 | 0.848739 | 0.000000 | 0.168067 | 0.292308 | 0.015110 | 0.043681 | 0.058750 |
8 | 345 | 0.995792 | 0.000000 | 0.415929 | 0.000000 | 0.079646 | 0.683029 | 0.016943 | 0.041294 | 0.018143 |
9 | 362 | 1.000000 | 0.000000 | 0.772358 | 0.000000 | 0.333333 | 0.555556 | 0.010847 | 0.027219 | 0.035677 |
10 | 401 | 1.000000 | 0.000000 | 0.464789 | 0.000000 | 0.084507 | 0.432191 | 0.018521 | 0.044088 | 0.018947 |
11 | 416 | 1.000000 | 0.000000 | 0.581818 | 0.000000 | 0.218182 | 0.170732 | 0.034609 | 0.048620 | 0.063734 |
1 | Chaudhry I A, Khan A A. A research survey: Review of flexible job shop scheduling techniques[J]. International Transactions in Operational Research, 2016, 23(3): 551-591. |
2 | Kress D, Müller D, Nossack J. A worker constrained flexible job shop scheduling problem with sequence-dependent setup times[J]. OR Spectrum, 2019, 41(1): 179-217. |
3 | 仇永涛. 离散智能车间扰动预测与高效运行管控方法研究[D]. 无锡:江南大学, 2020. |
Qiu Y T. Research on disturbance prediction and efficientoperation control of intelligent job shop[D]. Wuxi: Jiangnan University, 2020. | |
4 | Dai M, Tang D B, Giret A, et al. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints[J]. Robotics and Computer-Integrated Manufacturing,2019,59: 143-157. |
5 | Zhang G H, Hu Y F, Sun J H, et al. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and Evolutionary Computation, 2020, 54: 100664. |
6 | 陈勇, 王昊天, 易文超, 等. 基于元胞机与强化学习的多扰动车间调度算法[J]. 计算机集成制造系统, 2021,27(12):3536-3549. |
Chen Y, Wang H T, Yi W C, et al. Algorithm of scheduling for multi-disturbance job-shop based oncellular automata and reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2021,27(12):3536-3549. | |
7 | 刘雪红, 段程, 王磊. 基于改进候鸟算法的柔性作业车间分批调度问题[J]. 计算机集成制造系统, 2021,27(11):3185-3195. |
Liu X H, Duan C, Wang L. Flexible job shop scheduling with lot streaming based on improvedmigrating birds optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2021,27(11):3185-3195. | |
8 | Zheng X L, Wang L. A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem[J]. International Journal of Production Research, 2016, 54(18): 5554-5566. |
9 | Frihat M B, Hadj-Alouane A, Sadfi C. Optimization of the integrated problem of employee timetabling and job shop scheduling[J]. Computers & Operations Research, 2022, 137: 105332. |
10 | Lei D M, Guo X P. Variable neighbourhood search for dual-resource constrained flexible job shop scheduling[J]. International Journal of Production Research, 2014, 52(9): 2519-2529. |
11 | Gong G L, Chiong R, Deng Q W, et al. Energy-efficient flexible flow shop scheduling with worker flexibility[J]. Expert Systems with Applications, 2020, 141: 112902. |
12 | Luo Q, Deng Q W, Gong G L, et al. An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers[J]. Expert Systems with Applications, 2020, 160: 113721. |
13 | 刘强. 复杂产品总装生产线资源配置优化研究[D]. 北京:北京化工大学, 2020. |
Liu Q. Research on resource allocation optimization of complex product assembly line[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
14 | Defersha F M, Rooyani D. An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time[J]. Computers & Industrial Engineering, 2020, 147: 106605. |
15 | Zhang F F, Mei Y, Nguyen S, et al. Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1797-1811. |
16 | Chen R H, Yang B, Li S, et al. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem[J]. Computers & Industrial Engineering, 2020, 149: 106778. |
17 | 顾九春, 姜天华, 朱惠琦. 多目标离散灰狼优化算法求解作业车间节能调度问题[J]. 计算机集成制造系统, 2021,27(8):2295-2306. |
Gu J C, Jiang T H, Zhu H Q. Energy-saving job shop scheduling problem with multi-objective discrete grey wolf optimization algorithm[J].Computer Integrated Manufacturing Systems, 2021,27(8):2295-2306. | |
18 | Gong G L, Chiong R, Deng Q W, et al. A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker flexibility[J]. International Journal of Production Research, 2020, 58(14): 4406-4420. |
19 | Li Y B, Huang W X, Wu R, et al. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem[J]. Applied Soft Computing, 2020, 95: 106544. |
20 | Gao D, Wang G G, Pedrycz W. Solving fuzzy job-shop scheduling problem using de algorithm improved by a selection mechanism[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3265-3275. |
21 | An Y J, Chen X H, Li Y H, et al. An improved non-dominated sorting biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop scheduling problem[J]. Applied Soft Computing, 2021, 99: 106869. |
22 | Ding H J, Gu X S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem[J]. Computers & Operations Research,2020,121: 104951. |
23 | Caldeira R H, Gnanavelbabu A. A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem[J]. Expert Systems with Applications, 2021, 170: 114567. |
24 | Wang X Z, Wang B, Zhang X X, et al. Two-objective robust job-shop scheduling with two problem-specific neighborhood structures[J]. Swarm and Evolutionary Computation, 2021, 61: 100805. |
25 | Akbar M, Irohara T. NSGA-II variants for solving a social-conscious dual resource-constrained scheduling problem[J]. Expert Systems with Applications, 2020, 162: 113754. |
26 | Tan W H, Yuan X F, Wang J L, et al. A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop[J]. Computers & Industrial Engineering, 2021, 160: 107557. |
27 | 徐小峰, 林姿汝, 周鹏. 多油品供给受限下多油库被动配送车辆路径问题研究[J]. 中国管理科学, 2021, 29(5): 157-165. |
Xu X F, Lin Z R, Zhou P. Research on vehicle routing problem of multiple oil depot passive distribution undermulti oil supply constraints[J].Chinese Journal of Management Science, 2021, 29(5): 157-165. |
[1] | Tieke Li,Yixuan Su,Wenxin Zhang,Bailin Wang. Interval Multi-objective Optimal Scheduling for Steelmaking-continuous Casting with Processing Time Uncertainty [J]. Chinese Journal of Management Science, 2024, 32(8): 95-106. |
[2] | Fuyu Wang,Haoxuan Xie,Zhonggao Lin,Jun Wang. Multi-objective Optimization Model and Adaptive Quantum Ant Colony Algorithm for Emergency Evacuation of High-speed Railway Stations under Emergencies [J]. Chinese Journal of Management Science, 2024, 32(3): 188-197. |
[3] |
Hai-yu WANG.
Economic-statistical Optimization Design of Dynamic |
[4] | HU Xue-jun, ZHAO Yan, SHAN Mi-yuan, WANG Jian-jiang, BIE Li. An Adaptive Large Neighborhood Search Metaheuristic for Robust Multi-project Scheduling [J]. Chinese Journal of Management Science, 2022, 30(9): 217-231. |
[5] | HU Yu-zhen, LI Qian-qian, JIANG Shan. Multi-Objective Optimization of Overseas Warehouse Location for Cross-border E-commerce Enterprises [J]. Chinese Journal of Management Science, 2022, 30(7): 201-209. |
[6] | NIU Ben, , GUO Chen, TANG Heng. Multi-objective Multi-learning Bacterial Foraging Optimization Algorithm for Mixed Data Clustering [J]. Chinese Journal of Management Science, 2022, 30(12): 131-140. |
[7] | XU Xiao-feng, LIN Zi-ru, ZHOU Peng. Research on Vehicle Routing Problem of Multiple Oil Depot Passive Distribution under Multi Oil Supply Constraints [J]. Chinese Journal of Management Science, 2021, 29(5): 157-165. |
[8] | PENG Wu-liang, MA Xiao-jing. A Bi-objective Optimization Method for Tactical Project Planning [J]. Chinese Journal of Management Science, 2021, 29(2): 69-77. |
[9] | DONG Xue-fan, LIU Yi-jun, LIAN Ying. Entropy-Controlled Principle based Multi-objective Industrial Structure Optimization Model in the Tertiary Industry:A Case Study of Beijing [J]. Chinese Journal of Management Science, 2017, 25(9): 53-62. |
[10] | DING Qiu-lei. Model of Disruption Management for the Change of Time Window Based on Human Behavior in Logistic Distribution [J]. Chinese Journal of Management Science, 2015, 23(5): 89-97. |
[11] | GE Huai-zhi, ZHANG Jin-long. A Method for Public Housing Matching Assignment Based on Axiomatic Design and Excess Functionality [J]. Chinese Journal of Management Science, 2015, 23(1): 111-120. |
[12] | LI Shuang-lin, MA Zu-jun, ZHENG Bin, DAI Ying. Fuzzy Multi-Objective Location-Multimodal Transportation Problem for Relief Delivery during the Initial Post-earthquake Period [J]. Chinese Journal of Management Science, 2013, (2): 144-151. |
[13] | WANG Ke-xi, YUAN Ji-jun, HUANG Min-mei, CHEN Wei-min. Multi-Objective Intelligent Optimization Design Method for Multi-Platform Based Scaled-Based Product Family [J]. Chinese Journal of Management Science, 2011, 19(4): 111-119. |
[14] | QI Er-shi, LI Hui, LIU liang. Research on Collaborative Resource Optimization of Virtual Enterprises Based on Genetic Algorithm [J]. Chinese Journal of Management Science, 2011, 19(1): 77-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|