Chinese Journal of Management Science ›› 2023, Vol. 31 ›› Issue (11): 140-150.doi: 10.16381/j.cnki.issn1003-207x.2021.0773
Previous Articles Next Articles
Xi-mei LV,Cui-qing JIANG(),Yong DING,Zhao WANG
Received:
2021-04-19
Revised:
2021-10-29
Online:
2023-11-15
Published:
2023-11-20
Contact:
Cui-qing JIANG
E-mail:jiangcuiq@163.com
CLC Number:
Xi-mei LV,Cui-qing JIANG,Yong DING,Zhao WANG. Financial Distress Prediction of “New Third Board” Firms by Integrating Soft Information in Current Reports[J]. Chinese Journal of Management Science, 2023, 31(11): 140-150.
"
主题特征 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
---|---|---|---|---|---|---|---|---|
常数项 | 0.688(0.275) | 0.783(0.314) | 0.675(0.265) | 1.968(0.777) | 1.125(0.444) | 0.365(0.145) | -0.781(-0.306) | 0.9582(0.355) |
T1 | 0.075(0.075) | |||||||
T2 | -1.143?(-1.759) | -1.235(-1.413) | ||||||
T3 | -2.814*(-2.077) | -3.413*(-2.121) | ||||||
T4 | -2.982**(-3.022) | -2.505*(-2.186) | ||||||
T5 | 3.352**(3.172) | 2.400?(1.897) | ||||||
T6 | 1.390(1.477) | |||||||
T7 | 4.249***(5.401) | 2.957**(2.951) | ||||||
AIC | 355.14 | 351.9 | 350.03 | 343.87 | 347.09 | 353.2 | 329.15 | 319.46 |
"
模型 | 衡量标准 | A1 | B1 | C1 | D1 | E1 | F1 |
---|---|---|---|---|---|---|---|
LR | AUC | 0.829 | 0.699 | 0.623 | 0.840 | 0.828 | 0.842 |
KS | 0.713 | 0.494 | 0.413 | 0.725 | 0.717 | 0.724 | |
H-measure | 0.617 | 0.382 | 0.286 | 0.638 | 0.625 | 0.632 | |
Accuracy | 0.785 | 0.621 | 0.555 | 0.797 | 0.780 | 0.793 | |
Type1 Error | 0.169 | 0.331 | 0.393 | 0.156 | 0.170 | 0.163 | |
Type2 Error | 0.254 | 0.405 | 0.425 | 0.241 | 0.262 | 0.245 | |
F-measure | 0.758 | 0.588 | 0.533 | 0.775 | 0.754 | 0.774 | |
CART | AUC | 0.788 | 0.663 | 0.630 | 0.856 | 0.795 | 0.855 |
KS | 0.629 | 0.428 | 0.378 | 0.714 | 0.627 | 0.712 | |
H-measure | 0.493 | 0.271 | 0.237 | 0.607 | 0.491 | 0.605 | |
Accuracy | 0.734 | 0.627 | 0.592 | 0.807 | 0.733 | 0.804 | |
Type1 Error | 0.249 | 0.339 | 0.384 | 0.168 | 0.247 | 0.174 | |
Type2 Error | 0.275 | 0.393 | 0.406 | 0.202 | 0.278 | 0.201 | |
F-measure | 0.719 | 0.601 | 0.572 | 0.793 | 0.716 | 0.790 | |
RF | AUC | 0.858 | 0.732 | 0.621 | 0.939 | 0.855 | 0.932 |
KS | 0.747 | 0.539 | 0.420 | 0.863 | 0.74 | 0.855 | |
H-measure | 0.659 | 0.432 | 0.286 | 0.817 | 0.654 | 0.807 | |
Accuracy | 0.822 | 0.643 | 0.576 | 0.859 | 0.810 | 0.847 | |
Type1 Error | 0.126 | 0.317 | 0.344 | 0.097 | 0.137 | 0.104 | |
Type2 Error | 0.218 | 0.368 | 0.417 | 0.148 | 0.258 | 0.160 | |
F-measure | 0.794 | 0.621 | 0.560 | 0.844 | 0.784 | 0.832 |
"
模型 | 衡量标准 | 提前半年 | 提前一年 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A2 | B2 | C2 | D2 | E2 | F2 | A3 | B3 | C3 | D3 | E3 | F3 | ||
LR | AUC | 0.813 | 0.684 | 0.611 | 0.821 | 0.816 | 0.824 | 0.809 | 0.676 | 0.605 | 0.817 | 0.805 | 0.818 |
KS | 0.687 | 0.485 | 0.397 | 0.692 | 0.671 | 0.698 | 0.678 | 0.460 | 0.385 | 0.690 | 0.680 | 0.688 | |
H-measure | 0.583 | 0.377 | 0.265 | 0.599 | 0.585 | 0.598 | 0.574 | 0.348 | 0.261 | 0.595 | 0.581 | 0.599 | |
Accuracy | 0.762 | 0.607 | 0.527 | 0.779 | 0.762 | 0.788 | 0.764 | 0.600 | 0.529 | 0.773 | 0.756 | 0.776 | |
Type1 Error | 0.198 | 0.353 | 0.483 | 0.186 | 0.197 | 0.186 | 0.253 | 0.366 | 0.501 | 0.235 | 0.259 | 0.237 | |
Type2 Error | 0.276 | 0.456 | 0.464 | 0.260 | 0.273 | 0.256 | 0.298 | 0.463 | 0.475 | 0.276 | 0.290 | 0.278 | |
F-measure | 0.733 | 0.562 | 0.522 | 0.748 | 0.735 | 0.742 | 0.728 | 0.558 | 0.519 | 0.742 | 0.730 | 0.747 | |
CART | AUC | 0.763 | 0.677 | 0.608 | 0.832 | 0.770 | 0.831 | 0.731 | 0.643 | 0.600 | 0.786 | 0.732 | 0.779 |
KS | 0.588 | 0.435 | 0.345 | 0.672 | 0.587 | 0.670 | 0.536 | 0.396 | 0.341 | 0.612 | 0.539 | 0.607 | |
H-measure | 0.443 | 0.240 | 0.203 | 0.553 | 0.440 | 0.552 | 0.388 | 0.289 | 0.195 | 0.476 | 0.389 | 0.475 | |
Accuracy | 0.708 | 0.604 | 0.573 | 0.784 | 0.707 | 0.782 | 0.685 | 0.635 | 0.594 | 0.757 | 0.701 | 0.749 | |
Type1 Error | 0.286 | 0.377 | 0.389 | 0.201 | 0.284 | 0.206 | 0.295 | 0.398 | 0.425 | 0.237 | 0.291 | 0.245 | |
Type2 Error | 0.313 | 0.384 | 0.448 | 0.238 | 0.318 | 0.237 | 0.355 | 0.428 | 0.450 | 0.267 | 0.359 | 0.272 | |
F-measure | 0.688 | 0.579 | 0.547 | 0.766 | 0.684 | 0.763 | 0.655 | 0.574 | 0.561 | 0.739 | 0.656 | 0.73 | |
RF | AUC | 0.836 | 0.719 | 0.600 | 0.925 | 0.832 | 0.917 | 0.809 | 0.747 | 0.613 | 0.856 | 0.810 | 0.856 |
KS | 0.713 | 0.524 | 0.390 | 0.837 | 0.705 | 0.828 | 0.673 | 0.566 | 0.383 | 0.728 | 0.677 | 0.735 | |
H-measure | 0.616 | 0.395 | 0.254 | 0.784 | 0.611 | 0.771 | 0.577 | 0.482 | 0.266 | 0.652 | 0.579 | 0.657 | |
Accuracy | 0.799 | 0.621 | 0.553 | 0.840 | 0.787 | 0.827 | 0.754 | 0.700 | 0.562 | 0.774 | 0.761 | 0.778 | |
Type1 Error | 0.153 | 0.351 | 0.455 | 0.122 | 0.147 | 0.130 | 0.221 | 0.390 | 0.467 | 0.187 | 0.220 | 0.180 | |
Type2 Error | 0.284 | 0.405 | 0.476 | 0.248 | 0.294 | 0.192 | 0.298 | 0.431 | 0.493 | 0.280 | 0.292 | 0.275 | |
F-measure | 0.765 | 0.595 | 0.530 | 0.818 | 0.756 | 0.805 | 0.735 | 0.571 | 0.533 | 0.747 | 0.741 | 0.751 |
1 | 何牧原,张昀.中国新三板市场的兴起、发展与前景展望[J].数量经济技术经济研究,2017,34(4):74-91. |
He Muyuan, Zhang Yun. The emergence, development and prospect of China’s New Third Board market[J]. The Journal of Quantitative and Technical Economics, 2017, 34(4): 74-91. | |
2 | Geng Ruibin, Bose I, Chen Xi. Prediction of financial distress: an empirical study of listed Chinese companies using data mining[J]. European Journal of Operational Research, 2015, 241(1): 236-247. |
3 | Sun Jie, Fujita H, Zheng Yujiao, et al. Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods[J]. Information Sciences, 2021, 559: 153-170. |
4 | 王昱,杨珊珊. 考虑多维效率的上市公司财务困境预警研究[J]. 中国管理科学,2021,29(2):32-41. |
Wang Yu, Yang Shanshan. Corporate financial distress prediction based on multi-dimensional efficiency indicators[J]. Chinese Journal of Management Science, 2021, 29(2): 32-41. | |
5 | Chen Xiaohong, Wang Xiaoding, Wu Desheng. Credit risk measurement and early warning of SMEs: an empirical study of listed SMEs in China[J]. Decision Support Systems, 2010, 49(3): 301-310. |
6 | Tsai M, Wang Chuanju. On the risk prediction and analysis of soft information in finance reports[J]. European Journal of Operational Research, 2017, 257(1): 243-250. |
7 | 陈艺云.基于信息披露文本的上市公司财务困境预测:以中文年报管理层讨论与分析为样本的研究[J].中国管理科学,2019,27(7):23-34. |
Chen Yiyun. Forecasting financial distress of listed companies with textual content of the information disclosure: a study based on MD&A in Chinese annual reports[J]. Chinese Journal of Management Science, 2019, 27(7): 23-34. | |
8 | Zhao Shuping, Xu Kai, Wang Zhao, et al. Financial distress prediction by combining sentiment tone features[J]. Economic Modelling, 2022, 106: 105709. |
9 | Feng Mai, Tian S, Lee C, et al. Deep learning models for bankruptcy prediction using textual disclosures[J]. European Journal of Operational Research, 2019, 274(2): 743-758. |
10 | 于忠泊,田高良,曾振.上市公司临时报告对资本市场信息传递的影响[J].系统工程理论与实践,2012,32(6):1151-1165. |
Yu Zhongbo, Tian Gaoliang, Zeng Zhen. Impact of listed companies’ interim reports on market information transmission[J]. Systems Engineering-Theory and Practice, 2012, 32(6): 1151-1165. | |
11 | McMullin J, Miller B, Twedt B. Increased mandated disclosure frequency and price formation: evidence from the 8-K expansion regulation[J]. Review of Accounting Studies, 2019, 24(1): 1-33. |
12 | 蒋翠侠,黄韵华,许启发.基于Lasso二元选择分位数回归的上市公司信用评估[J].系统工程,2017,35(2):16-24. |
Jiang Cuixia, Huang Yunhua, Xu Qifa. Credit evaluation of listed companies via lasso binary quantile regression approach[J]. Systems Engineering, 2017, 35(2): 16-24. | |
13 | 倪志伟,薛永坚,倪丽萍,等.基于流形学习的多核SVM财务预警方法研究[J].系统工程理论与实践,2014,34(10):2666-2674. |
Ni Zhiwei, Xue Yongjian, Ni Liping, et al. Research of multiple kernel SVM based on manifold learning in financial distress prediction[J]. Systems Engineering-Theory and Practice, 2014, 34(10): 2666-2674. | |
14 | 张亮,张玲玲,陈懿冰,等.基于信息融合的数据挖掘方法在公司财务预警中的应用[J].中国管理科学,2015,23(10):170-176. |
Zhang Liang, Zhang Lingling, Chen Yibing, et al. Based on information fusion technique with data mining in the application of finance early-warning[J]. Chinese Journal of Management Science, 2015, 23(10): 170-176. | |
15 | Shen Feng, Liu Yongyong, Wang Run, et al. A dynamic financial distress forecast model with multiple forecast results under unbalanced data environment[J]. Knowledge-Based Systems, 2020, 192: 105365. |
16 | Suk I, Lee S, Kross W. CEO turnover and accounting earnings: the role of earnings persistence[J]. Management Science, 2021, 67(5): 3195-3218. |
17 | Liang Deron, Tsai C, Wu Hsinting. The effect of feature selection on financial distress prediction[J]. Knowledge-Based Systems, 2015, 73: 289-297. |
18 | Yin Chang, Jiang Cuiqing, Jain H, et al. Evaluating the credit risk of SMEs using legal judgments[J]. Decision Support Systems, 2020, 136: 113364. |
19 | 王铁军.媒体对证券市场的影响研究:基于大数据视角[D].成都:西南财经大学,2016. |
Wang Tiejun. The effect of media on stock markets: from a big data perspective[D]. Chengdu: Southwestern University of Finance and Economics, 2016. | |
20 | Wang Zhao, Jiang Cuiqing, Zhao Huimin, et al. Mining semantic soft factors for credit risk evaluation in peer-to-peer lending[J]. Journal of Management Information Systems, 2020, 37(1): 282-308. |
21 | 孟庆斌,杨俊华,鲁冰.管理层讨论与分析披露的信息含量与股价崩盘风险——基于文本向量化方法的研究[J].中国工业经济,2017(12):132-150. |
Meng Qingbin, Yang Junhua, Lu Bing. The informative content of management discussion and analysis and stock price crash risk: based on text vectorization method[J]. China Industrial Economics, 2017(12): 132-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|