[1] Ederington L H. The hedging performance of the new futures markets[J]. Journal of Finance, 1979, 34:157-170. [2] Hou Y, Li S. Hedging performance of Chinese stock index futures:An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches[J]. Pacific Basin Finance Journal, 2013, 24(3):109-131. [3] Kroner K F, Sultan J. Time varying distributions and dynamic hedging with foreign currency futures[J]. Journal of Financial and Quantitative Analysis, 1993, 28(4):535-551. [4] Chung S K. Bivariate mixed normal GARCH models and out-of-sample hedge performances[J]. Finance Research Letters, 2009, 6(3):130-137. [5] Chang C Y, Lai J Y, Chuang I Y. Futures hedging effectiveness under the segmentation of bear/bull energy markets[J]. Energy Economics, 2010, 32(2):442-449. [6] Zhou Jian. Hedging performance of REIT index futures:A comparison of alternative hedge ratio estimation methods[J]. Economic Modelling, 2016, 52(Part B):690-698. [7] Basher S A, Sadorsky P. Hedging emerging market stock prices with oil, gold, VIX, and bonds:A comparison between DCC, ADCC and GO-GARCH[J]. Energy Economics, 2016, 54:235-247. [8] Fong W M, See K H. A Markov switching model of the conditional volatility of crude oil futures prices[J]. Energy Economics, 2002, 24(1):71-95. [9] Markopoulou C E, Skintzi V D, Refenes A P N. Realized hedge ratio:Predictability and hedging performance[J]. International Review of Financial Analysis, 2016, 45:121-133. [10] Su E. Stock index hedging using a trend and volatility regime-switching model involving hedging cost[J]. International Review of Economics and Finance, 2017, 47:233-254. [11] Philip D, Shi Y. Optimal hedging in carbon emission markets using Markov regime switching models[J]. Journal of International Financial Markets Institutions and Money, 2016, 43:1-15. [12] Yan Zhipeng, Li Shenghong. Hedge ratio on Markov regime-switching diagonal Bekk-Garch model[J]. Finance Research Letters, 2018, 24:49-56. [13] Billio M, Caporin M. Multivariate Markov switching dynamic conditional correlation GARCH representations for contagion analysis[J]. Statistical Methods and Applications, 2005, 14(2):145-161. [14] Billio M, Casarin R, Osuntuyi A. Markov switching GARCH models for Bayesian hedging on energy futures markets[J]. Energy Economics, 2018, 70:545-562. [15] 谢赤, 屈敏, 王纲金. 基于M-Copula-GJR-VaR模型的黄金市场最优套期保值比率研究[J]. 管理科学, 2013, 26(2):90-99. [16] 彭红枫, 陈奕. 中国铜期货市场最优套期保值比率估计——基于马尔科夫区制转移GARCH模型[J]. 中国管理科学, 2015, 23(5):14-22. [17] 余星, 张卫国, 刘勇军. 基于等价鞅测度的动态套期保值模型研究[J]. 系统工程理论与实践, 2018, 38(2):287-298. [18] Filardo A. Business-cycle phases and their transitional dynamics[J]. Journal of Business and Economic Statistics, 1994, 12(3):299-308. [19] Viswanath P V. Efficient use of information, convergence adjustments, and regression estimates of hedge ratios[J]. The Journal of Futures Markets, 1993, 13:43-53. [20] Simmons-Süer B. How relevant is capital structure for aggregate investment? A regime-switching approach[J]. International Review of Economics and Finance, 2018, 53:109-117. [21] Gary S F. Modeling the conditional distribution of interest rates as a regime-switching process[J]. Journal of Financial Economics, 1996, 42(1):27-62. [22] Lee H T, Yoder J K. A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios[J]. Applied Economics, 2007, 39(10):1253-1265. [23] Hamilton J D. A new approach to the economic analysis of nonstationary time series and the business cycle[J]. Econometrica, 1989, 57(2):357-384. [24] 苏海军, 欧阳红兵. 危机传染效应的识别与度量——基于改进MIS-DCC的分析[J]. 管理科学学报, 2013, 16(8):20-30. [25] Grossman S J, Shiller R J. The determinants of the variability of stock market prices[J]. American Economic Review, 1981, 71(2):222-227. |