中国管理科学 ›› 2023, Vol. 31 ›› Issue (12): 301-310.doi: 10.16381/j.cnki.issn1003-207x.2021.0383
收稿日期:
2021-02-26
修回日期:
2021-05-11
出版日期:
2023-12-15
发布日期:
2023-12-20
通讯作者:
宫大庆
E-mail:dqgong@bjtu.edu.cn
基金资助:
Shi-feng LIU1,3,Lai-song KANG1,2,3,Da-qing GONG1,3()
Received:
2021-02-26
Revised:
2021-05-11
Online:
2023-12-15
Published:
2023-12-20
Contact:
Da-qing GONG
E-mail:dqgong@bjtu.edu.cn
摘要:
群组指多个用户形成的群体;面向群组的事件兴趣点推荐,涉及到多个实体(如用户、群组、事件、兴趣点等)之间的复杂交互。本研究对基于事件的社交网络中多个实体及其交互进行了综合考虑,提出了一个基于异构信息网络和注意神经网络的事件兴趣点推荐算法,为群组推荐合适的兴趣点用于举办事件。首先,使用了基于优先级的采样技术来选择高质量的路径实例;然后,构建了群组、事件、兴趣点和基于元路径的上下文嵌入表示,并采用共同注意机制对其进行改进,从而增强了模型的可解释性;最后,基于真实数据集的实验结果验证了本研究方法的有效性和实用性,以及将异构信息网络和注意神经网络应用于事件兴趣点推荐的前景。
中图分类号:
刘世峰,康来松,宫大庆. 面向群组的事件兴趣点推荐算法研究[J]. 中国管理科学, 2023, 31(12): 301-310.
Shi-feng LIU,Lai-song KANG,Da-qing GONG. An Event POI Recommendation System for Groups in EBSN[J]. Chinese Journal of Management Science, 2023, 31(12): 301-310.
表4
不同方法在各类别数据集上的效果比较"
类别 | 模型 | Recall @10 | NDCG@10 |
---|---|---|---|
活动 | MARec | 0.9127 | 0.7774 |
SERGE | 0.8473 | 0.7329 | |
DeepCoNN | 0.7653 | 0.7159 | |
爱好 | MARec | 0.8312 | 0.6030 |
SERGE | 0.6784 | 0.5810 | |
DeepCoNN | 0.5721 | 0.3724 | |
社交 | MARec | 0.8567 | 0.6885 |
SERGE | 0.8203 | 0.6863 | |
DeepCoNN | 0.4549 | 0.2862 | |
娱乐 | MARec | 0.9231 | 0.8210 |
SERGE | 0.9104 | 0.8382 | |
DeepCoNN | 0.9114 | 0.7411 | |
技术 | MARec | 0.7864 | 0.6369 |
SERGE | 0.7434 | 0.6487 | |
DeepCoNN | 0.1356 | 0.1341 |
1 | 郭旦怀, 张鸣珂, 贾楠,等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12):1890-1902. |
Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(12):1890-1902. | |
2 | Feng Jie, Li Yong, Yang Zeyu, et al. Predicting human mobility with semantic motivation via multi-task attentional recurrent networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,34(5):2360-2374. |
3 | Lops P, De Gemmis M, Semeraro G. Content-based recommender systems: state of the art and trends[M]//Recommender Systems Handbook. Springer, Boston, MA, 2011: 73-105. |
4 | 仲秋雁, 王涵雪. LBSN下基于用户朋友关系的商业POI推荐[J]. 系统工程理论与实践,2021,41(10):2501-2511. |
Zhong Qiuyan, Wang Hanxue. Commercial POI recommendation based on user's friend relationship in LBSN[J]. Systems Engineering-Theory & Practice, 2021,41(10):2501-2511. | |
5 | 陈劲松, 孟祥武, 纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报,2020,31(12):3700-3715. |
Chen Jinsong, Meng Xiangwu, Ji Weiyu, et al. POI recommendation based on multidimensional context-aware graph embedding model[J]. Ruan Jian Xue Bao/Journal of Software, 2020,31(12):3700-3715. | |
6 | Sun Yizhou, Han Jiawei, Zhao Peixiang, et al. Rankclus: integrating clustering with ranking for heterogeneous information network analysis [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint-Petersburg, Russia, March 24-26 , Association for Computing Machinery, 2009: 565-576. |
7 | Shi Chuan, Li Yitong, Zhang Jiawei, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(1): 17-37. |
8 | Zhao Huan, Yao Quanming, Li Jiandan, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 635-644. |
9 | 康来松, 刘世峰, 宫大庆. LBSN中基于加权异构信息网络的兴趣点推荐[J]. 系统工程,2020,38(6):14-24. |
Kang Laisong, Liu Shifeng, Gong Daqing. Weighted heterogeneous information networks based personalized point-of-interest recommendation system in LBSN[J]. Systems Engineering,2020,38(06):14-24. | |
10 | 陈江美, 张岐山, 张文德,等. 融合潜在兴趣和多类型情景信息的兴趣点推荐模型[J]. 情报科学,2021,39(3):143-149+160. |
Chen Jiangmei, Zhang Qishan, Zhang Wende, et al. Point of interest recommendation model combining potential check-ins and multi-type contextual information. Information Science,2021,39(3):143-149+160. | |
11 | 朱志国, 周雨禾, 王谢宁. 移动商务中融合签到位置与用户间相似性的兴趣点精准推荐[J]. 系统工程理论与实践,2020,40(2):462-469. |
Zhu Zhiguo, Zhou Yuhe, Wang Xiening. Recommendation of POI by integrating user similarity and location information in mobile commerce[J]. Systems Engineering- Theory& Practice,2020,40(2):462-469. | |
12 | Xu Linchuan, Wei Xiaokai, Cao Jiannong, et al. Embedding of Embedding (EOE) joint embedding for coupled heterogeneous networks[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 741-749. |
13 | Dong Yuxiao, Chawla N V, Swami A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 135-144. |
14 | Fu Taoyang, Lee Wangchien, Lei Zhen. Hin2vec: explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1797-1806. |
15 | Xiong Caiming, Zhong Victor, Socher R. Dynamic coattention networks for question answering[J]. arXiv preprint arXiv:, 2016. |
16 | Gao Jianfeng, Pantel P, Gamon M, et al. Modeling interestingness with deep neural networks[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),Doha, Qatar, October, Association for Computational Linguistics,2014: 2-13. |
17 | Raich M, Mueller J, Abfalter D. Hybrid analysis of textual data: grounding managerial decisions on intertwined qualitative and quantitative analysis[J]. Management Decision, 2014, 52(4):737 - 754. |
18 | Yin Hongzhi, Zhou Xiaofang, Cui Bin, et al. Adapting to user interest drift for poi recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2566-2581. |
19 | Pramanik S, Haldar R, Kumar A, et al. Deep learning driven venue recommender for event-based social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,32(11):2129-2143. |
20 | Hinton G E, Salakhutdinov R R. A better way to pretrain deep boltzmann machines[C]//Advances in Neural Information Processing Systems,Lake Tahoe, Nevada, United States,November 21, The MIT Press,2012: 2447-2455. |
21 | Chen Tianqi, Zhang Weinan, Lu Qiuxia, et al. SVDFeature: a toolkit for feature-based collaborative filtering[J]. The Journal of Machine Learning Research, 2012, 13(1): 3619-3622. |
22 | Phan M C, Sun Aixin, Tay Y, et al. NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1667-1676. |
23 | Tang Jian, Qu Meng, Wang Mingzhe, et al. Line: large-scale information network embedding[C] //Proceedings of the 24th international conference on world wide web,Florence, Italy, May 18-22 ,Association for Computing Machinery,2015: 1067-1077. |
24 | Pham T A N, Li Xutao, Gao Cong, et al. A general recommendation model for heterogeneous networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3140-3153. |
25 | Liu Shenghao, Wang Bang, Xu Minghua. Serge: successive event recommendation based on graph entropy for event-based social networks[J]. IEEE Access, 2017(6): 3020-3030. |
26 | Lei Zheng, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 425-434. |
27 | He Xiangnan, Liao Lizi, Zhang Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web,Companion, Perth, Australia, April 3-7, International World Wide Web Conferences Steering Committee,2017: 173-182. |
28 | Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,Chapel Hill, North Carolina, USA, October 22-26, Association for Computing Machinery, 1994: 175-186. |
29 | Pramanik S, Gundapuneni M, Pathak S, et al. Can I foresee the success of my meetup group?[C]// Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Davis, California, August 18-21 , IEEE Press, 2016: 366-373. |
[1] | 肖泉,万杉杉,张星,蔡淑琴. IT可供性视角下移动直播电商平台用户质量感知与满意度研究[J]. 中国管理科学, 2024, 32(10): 181-193. |
[2] | 刘洋,邓前前,樊治平,张琦. 网约车平台开放策略及其效率研究[J]. 中国管理科学, 2024, 32(9): 82-92. |
[3] | 郑月龙,白春光,李登峰. 考虑市场化开发的产业共性技术供给决策研究[J]. 中国管理科学, 2024, 32(8): 127-138. |
[4] | 董永杰,刘晨光,赵梦园. 环境税政策下企业副产品协同决策研究[J]. 中国管理科学, 2024, 32(7): 76-83. |
[5] | 丁黎黎,张凯旋,王垒. 公众情绪如何影响工业共生链企业减排?[J]. 中国管理科学, 2024, 32(6): 312-322. |
[6] | 陈星光,李心宇,程鲁强. 考虑订单偏好的外卖众包配送优化策略研究[J]. 中国管理科学, 2024, 32(6): 86-97. |
[7] | 赵新刚,周颖. 重大突发公共卫生事件中社会群体行为演化的计算实验:以新冠疫情为例[J]. 中国管理科学, 2024, 32(5): 207-217. |
[8] | 王雪莲,李嫄,高凯凯,郭子秀. 订阅型在线知识付费产品用户体验价值的层级路径研究[J]. 中国管理科学, 2024, 32(5): 315-324. |
[9] | 杜晓丽,李登峰. 基于大老板博弈的国际贸易物流区块链网络共识研究[J]. 中国管理科学, 2024, 32(4): 120-129. |
[10] | 陈凤娇,刘德海. 重大传染病多渠道疫情信息发布模式的演化路径分析[J]. 中国管理科学, 2024, 32(4): 237-249. |
[11] | 景熠,曹柳,张闻秋. 考虑多元行为策略的地方政府大气治理四维演化博弈分析[J]. 中国管理科学, 2024, 32(4): 306-314. |
[12] | 王伟明,徐海燕,朱建军,黄鑫. 基于TTDWAA算子和TPBM算子的混合型多属性大群体决策方法[J]. 中国管理科学, 2024, 32(4): 97-107. |
[13] | 李祥文,宋程,丁帅. 人机协同决策中的人因能力评估研究[J]. 中国管理科学, 2024, 32(3): 145-155. |
[14] | 刘茹,彭健,程永生,邓正华,乔星. 基于退款保证的线上零售商体验渠道策略研究[J]. 中国管理科学, 2024, 32(2): 178-187. |
[15] | 杨曼,刘德海. 物理-社会耦合系统下震后多方协同救援的微分博弈模型[J]. 中国管理科学, 2024, 32(1): 115-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|