中国管理科学 ›› 2022, Vol. 30 ›› Issue (9): 275-286.doi: 10.16381/j.cnki.issn1003-207x.2020.0899
• 论文 • 上一篇
李霞1, 李守伟2
收稿日期:
2020-05-18
修回日期:
2020-08-11
出版日期:
2022-09-20
发布日期:
2022-09-01
通讯作者:
李守伟(1970-),男(汉族),山东临沂人,山东师范大学商学院,教授,博士,研究方向:智能算法与网络分析,Email:lishouwei@sdnu.edu.cn.
E-mail:lishouwei@sdnu.edu.cn
基金资助:
LI Xia1, LI Shou-wei2
Received:
2020-05-18
Revised:
2020-08-11
Online:
2022-09-20
Published:
2022-09-01
Contact:
李守伟
E-mail:lishouwei@sdnu.edu.cn
摘要: 针对具有非线性和不稳定性的时间序列,提出一种结合经验模态分解(EMD)、有向可见图(DVG)网络的动态预测模型。利用经验模态分解将原时间序列分解为多个固有模态函数(IMF),然后对分解后的高频和低频IMF利用快速傅里叶变换得到各自的周期;依据每个周期,从原时间序列的尾部截取长短不一的子序列,然后采用有向可见图算法转换为多个有向网络,利用随机游走在每个有向网络中寻找与时间序列最后一个节点相似的节点;最后,依据平行线法,预测时间序列的下一个数值。原油价格的时间序列是一类典型的具有非线性和不稳定性的序列,利用此模型对WTI原油每日价格进行实证分析。研究结果表明,此模型不但可以有效地预测时间序列的变化趋势,而且具有较高的预测精度。
中图分类号:
李霞, 李守伟. 基于EMD与DVG的非线性时间序列预测模型及其应用研究[J]. 中国管理科学, 2022, 30(9): 275-286.
LI Xia, LI Shou-wei. Non-linear Time Series Prediction Model Based on EMD and DVG and Its Application[J]. Chinese Journal of Management Science, 2022, 30(9): 275-286.
[1] 潘和平,张承钊. FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学, 2018, 26(6): 26-38.Pan Heping, Zhang Chengzhao. FEPA: An adaptive integrated prediction model of financial times series[J].Chinese Journal of Management Science,2018,26(6): 26-38. [2] Box G E, Jenkins G M, Reinsel G C, et al. Time series analysis: forecasting and control[M]. New York: John Wiley & Sons, 2015. [3] 欧阳红兵,黄亢,闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35.Ouyang Hongbing, Huang Kang, Yan Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science,2020,28(4): 27-35. [4] Ghaffari A, Zare S. A novel algorithm for prediction of crude oil price variation based on soft computing[J]. Energy Economics, 2009, 31(4): 531-536. [5] 蔡超敏,凌立文,牛超,等. 国内猪肉市场价格的EMD-SVM集成预测模型[J].中国管理科学,2016,24(S1):845-851.Cai Chaomin,Ling Liwen, Niu Chao,etal. Integration prediction of domestic pork market price based on empirical mode decomposition and support vector machine[J]. Chinese Journal of Management Science,2016,24(S1):845-851. [6] He L T, Hu C, Casey K M. Prediction of variability in mortgage rates: interval computing solutions[J]. The Journal of Risk Finance, 2009, 10(2): 142-154. [7] 龚旭,林伯强. 跳跃风险、结构突变与原油期货价格波动预测[J]. 中国管理科学, 2018, 26(11): 11-21.Gong Xu, Lin Boqiang. Jump risk, structural breaks and forecasting crude oil future volatility[J]. Chinese Journal of Management Science, 2018, 26(11): 11-21. [8] Ye M, Zyren J, Shore J. A monthly crude oil spot price forecasting model using relative inventories[J]. International Journal of Forecasting, 2005, 21(3): 491-501. [9] He Yanan, Wang Shouyang, Lai Kin Keung. Global economic activity and crude oil prices: A cointegration analysis[J]. Energy Economics, 2010, 32(4): 868-876. [10] 刘映琳,刘永辉,鞠卓. 国际原油价格波动对中国商品期货的影响——基于多重相关性结构断点的分析[J]. 中国管理科学, 2019, 27(2): 31-40.Liu Yinglin, Liu Yonghui, Ju Zhuo. The impact of international crude price fluctuation on Chinese commodity futures-based on the correlation structure breakpoint model[J]. Chinese Journal of Management Science, 2019, 27(2): 31-40. [11] 刘金培,林盛,郭涛,等. 一种非线性时间序列预测模型及对原油价格的预测[J]. 管理科学, 2011, 24(6): 104-112.Liu Jinpei, Lin Sheng, Guo Tao, et al. Nonlinear time series forecasting model and its application for oil price forecasting[J]. Journal of Management Science, 2011, 24(6): 104-112. [12] 阮连法,包洪洁. 基于经验模态分解的房价周期波动实证分析[J]. 中国管理科学, 2012, 20(3): 41-46.Ruan Lianfa, Bao Hongjie. An empirical analysis on periodic fluctuation of real estate price based on EMD[J]. Chinese Journal of Management Science, 2012, 20(3): 41-46. [13] Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions[J]. Mechanical systems and signal processing, 2008, 22(6): 1374-1394. [14] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual review of fluid mechanics, 1999, 31(1): 417-457. [15] Cheng Junsheng, Yu Dejie, Yang Yu. Application of support vector regression machines to the processing of end effects of Hilbert--Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1197-1211. [16] 孟宗,闫晓丽,王赛. 基于 HMM 校正与神经网络延拓的 EMD 端点效应抑制方法[J]. 中国机械工程, 2015, 26(14): 1920-1925.Meng Zong, Yan Xiaoli, Wang Qian. Restraining method of end effect for EMD based on error calibration by HMM and neural network[J]. Chinese Journal of Mechanical Engineering, 2015, 26(14): 1920-1925. [17] 苏东林,郑昊鹏.一种解决经验模态分解端点效应的边界延拓法[J]. 航空学报, 2016, 37(3): 960-969.Su Donglin, Zheng Haopeng. A boundary extension method for empirical mode decomposition end effect[J]. Journal of Aeronautics, 2016, 37(3): 960-969. [18] 成小林. 基于经验模态分解的时间序列预测研究[D]. 大连:大连理工大学, 2018.Cheng Xiaolin. Time series prediction based on empirical mode decomposition[D],Dalian:Journal of Dalian University of Technology,2018. [19] 马宇红,强亚蓉,杨梅. 一种基于经验模态分解的时间序列预测方法[J]. 西北师范大学学报(自然科学版), 2020, 56(1): 27-34.Ma Yuhong, Qiang Yarong, Yang Mei. A time series prediction method based on empirical mode decomposition[J]. Journal of Northwest University (Natural Science), 2020, 56(1): 27-34. [20] Yu Lean, Wang Shouyang, Lai Kin Keung. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5): 2623-2635. [21] Dong Yao, Wang Jianzhou, Jiang He, et al. Short-term electricity price forecast based on the improved hybrid model[J]. Energy Conversion and Management, 2011, 52(8-9): 2987-2995. [22] Guo Zhenhai, Zhao Weigang, Lu Haiyan, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2012, 37(1): 241-249. [23] Huang Shengzhi, Chang Jianxia, Huang Qiang, et al. Monthly streamflow prediction using modified EMD-based support vector machine[J]. Journal of Hydrology, 2014, 511: 764-775. [24] 管志威,陈国初,徐余法,等. 基于改进EMD与SVM的风电功率短期预测模型[J]. 控制工程, 2014, 21(6): 833-837.Guan Zhiwei, Chen Guochu, Xu Yufa, et al. The wind power shot-term forecast model based on improved EMD and SVM[J]. Control Engineering of China, 2014, 21(6): 833-837. [25] 王书平,胡爱梅,吴振信. 基于多尺度组合模型的铜价预测研究[J]. 中国管理科学, 2014, 22(8): 21-28.Wang Shuping, Hu Aimei, Wu Zhenxin. Forecasting of copper price based on multi-scale combined model[J]. Chinese Journal of Management Science, 2014, 22(8): 21-28. [26] Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4972-4975. [27] Lacasa L, Luque B, Luque J, et al. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion[J]. Euro physics Letters, 2009, 86(3): 30001. [28] 周婷婷,金宁德,高忠科,等. 基于有限穿越可视图的时间序列网络模型[J]. 物理学报, 2012, 61(3): 86-96.Zhou Tingting, Jin Ningde, Gao Zhongke, et al. Limited penetrable visibility graph for establishing complex network from time series[J]. Acta Physica Sinica,2012, 61(3): 86-96. [29] 汤胤,易娜,毛景慧. 基于有向有限穿越可视图的时间序列伴生网络[J]. 系统工程学报, 2017, 32(2): 156-162.Tang Ying, Yi Na, Mao Jinghui. Derived network based on directed limited penetrable visibility graph for time series[J]. Journal of Systems Engineering, 2017, 32(2): 156-162. [30] 张帆,严广乐. 基于可见图的沪深股市波动分析[J]. 上海理工大学学报, 2014, 36(3): 250-254.Zhang Fan, Yan Guangle. Stock market volatility analysis based on visibility graph algorithm[J]. Journal of the University of Shanghai for Science and Technology, 2014, 36(3): 250-254. [31] 易娜. 基于可视图的时间序列网络模型[D]. 广州:暨南大学, 2014.Yi Na. Time series network model based on Visual images[D]. Guangzhou: Jinan University,2014. [32] Liu Weiping, Lü Linyuan. Link prediction based on local random walk[J]. Euro physics Letters, 2010, 89(5): 58007. [33] Mao Shengzhong, Xiao Fuyuan. A novel method for forecasting Construction Cost Index based on complex network[J]. Physica A: Statistical Mechanics and its Applications, 2019, 527: 121306. [34] 彭丹丹,刘志亮,靳亚强,等. 基于软筛分停止准则的改进经验模态分解及其在旋转机械故障诊断中的应用[J]. 机械工程学报, 2019, 55(10): 122-132.Peng Dandan, Liu Zhiliang, JinYaqiang, et al. Improved EMD with a soft sifting stopping criterion and its application to fault diagnosis of rotating machinery[J]. Journal of Mechanical Engineering, 2019, 55(10): 122-132. [35] 陈继红,曾鑫,真虹,等. 海岬型干散货海运市场周期性特征谱分析模型[J]. 交通运输系统工程与信息, 2016, 16(6): 204-209.Chen Jihong, Zeng Xin, Zhen Hong, et al. Spectral analysis model for cyclical characteristics of capsize dry bulk shipping market[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(06): 204-209. [36] 梁强,范英,魏一鸣. 基于小波分析的石油价格长期趋势预测方法及其实证研究[J]. 中国管理科学, 2005, 13(1): 31-37.Liang Qiang, Fan Ying, Wei Yiming. A long trend forecasting approach for oil price based on wavelet analysis[J]. Journal of Management Science, 2005, 13(1): 31-37. [37] 徐科,徐金梧,班晓娟. 基于小波分解的某些非平稳时间序列预测方法[J]. 电子学报, 2001, 29(4): 566-568.Xu Ke, Xu Jinwu, Ban Xiaojuan. Forecasting of some non-stationary time series based on wavelet decomposition[J]. ACTA Electronic Sinica, 2001, 29(4): 566-568. |
[1] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[2] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[3] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[4] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[5] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[6] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[7] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[8] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
[9] | 冯倩倩,孙晓蕾,郝俊. 基于状态转移回归的动态集成时序预测方法[J]. 中国管理科学, 2024, 32(2): 307-314. |
[10] | 盛积良,黄毅,李居超. 我国行业风险敞口与行业网络结构的相关性研究[J]. 中国管理科学, 2024, 32(2): 199-209. |
[11] | 白兰,魏宇. 投资者公共卫生事件关注度与我国行业股票市场信息溢出效应研究[J]. 中国管理科学, 2024, 32(1): 54-64. |
[12] | 孟斌,廉荣文隽,隋聪,匡海波. 重大事件是否影响了航运市场溢出传递的稳定性[J]. 中国管理科学, 2023, 31(11): 46-57. |
[13] | 王明涛,李茜. 融资融券降低了交易中的信息不对称程度吗?[J]. 中国管理科学, 2023, 31(10): 1-11. |
[14] | 郭延禄,罗公利,侯贵生,王晓彤. “种草”与“翻车”:网红直播带货的产品质量问题与治理研究[J]. 中国管理科学, 2023, 31(10): 162-174. |
[15] | 冯易,王杜娟,胡知能,崔少泽. 基于改进LightGBM集成模型的胃癌存活性预测方法[J]. 中国管理科学, 2023, 31(10): 234-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|