Chinese Journal of Management Science >
2024 , Vol. 32 >Issue 9: 303 - 312
DOI: https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2587
Research on Employee Turnover Prediction Model Based on the Portrait
Received date: 2021-12-13
Revised date: 2022-04-26
Online published: 2024-10-12
Nowadays, employee turnover is an important issue in organizations. Predicting employee turnover in advance using big data can provide a scientific basis for making decisions of employment and retention, which will enhance the foresight and wisdom of human resource management. The key problem of reported employee turnover prediction models is the lack of business driving force, which is manifested in that they can only answer to the human resource manager whether an employee has the turnover intention, but cannot further indicate why he or she will leave and how to retain it in a targeted manner. Therefore, focusing on this problem, a portrait-based employee turnover prediction model named PCC is proposed, integrating PCA (Principal Component Analysis), CLARA (Clustering Large Application), and CART (Classification and Regression Tree). Finally, the PCC model is experimented on an open-source employee turnover dataset with 14,999 samples from Kaggle. Theoretical and experimental studies show that the PCC model can provide theoretical reference for employee turnover prediction, turnover portrait description and accurate retention strategy design. Besides, it can be used to predict the turnover intention of individual employee and monitor the turnover distribution of all employees. Furthermore, it can provide data support for employee retention and talent reserve from both micro and macro levels. In summary, the PCC model is a feasible, effective and intelligent system for human resource management.
Hongxu Yan , Shunkun Yu . Research on Employee Turnover Prediction Model Based on the Portrait[J]. Chinese Journal of Management Science, 2024 , 32(9) : 303 -312 . DOI: 10.16381/j.cnki.issn1003-207x.2021.2587
1 | 郝大山. 新生代知识型员工离职管理研究[J]. 山东社会科学, 2016(5): 185-198. |
1 | Hao D S. Research on turnover management of new generation knowledgeable employees[J]. Shandong Social Sciences, 2016(5): 185-198. |
2 | 彭娟, 张光磊, 刘善仕. 高绩效人力资源实践活动对员工流失率的协同与互补效应研究[J]. 管理评论, 2016, 28(5): 175-185. |
2 | Peng J, Zhang G L, Liu S S. The synergistic effect in high performance human resource practices based on the fuzzy-set qualitative comparative analysis[J]. Management Review, 2016, 28(5): 175-185. |
3 | Ajit P. Prediction of employee turnover in organizations using machine learning algorithms[J].Algorithms, 2016, 5(9): 22-36. |
4 | Gao X, Wen J H, Zhang C. An improved random forest algorithm for predicting employee turnover[J]. Mathematical Problems in Engineering, 2019, 2019: 1-12. |
5 | Jain P K, Jain M, Pamula R. Explaining and predicting employees’ attrition: A machine learning approach[J]. SN Applied Sciences, 2020, 2(4): 1-11. |
6 | Srivastava P R, Eachempati P. Intelligent employee retention system for attrition rate analysis and churn prediction: An ensemble machine learning and multi-criteria decision-making approach[J]. Journal of Global Information Management, 2021, 29(6): 1-29. |
7 | Ali W, Bader A. Prediction of employee turn over using random forest classifier with intensive optimized pca algorithm[J]. Wireless Personal Communications, 2021, 119(4): 3365-3382. |
8 | Jain N, Tomar A, Jana P K. A novel scheme for employee churn problem using multi-attribute decision making approach and machine learning[J]. Journal of Intelligent Information Systems, 2021, 56(2): 279-302. |
9 | Cooper A. The inmates are running the asylum: Why high-tech products drive us crazy and how to restore the sanity[M]. (Second Edition). Indiana: Sams, 2004. |
10 | 冯秋燕, 朱学芳. 社交媒体用户价值画像建模与应用研究[J]. 情报资料工作, 2019, 40(6): 73-80. |
10 | Feng Q Y, Zhu X F. Social media user value image modeling and application research[J]. Information and Documentation Services, 2019, 40(6): 73-80. |
11 | 俞诚成, 吕红霞. 基于大数据铁路旅客画像的客运营销策略研究[J]. 铁道学报, 2020, 42(8): 23-28. |
11 | Yu C C, Lv H X. Research on passenger transport marketing strategy based on big data railway passenger portrait[J]. Journal of the China Railway Society, 2020, 42(8): 23-28. |
12 | 闫泓序, 余顺坤, 林依青. 我国工业电力用户价值画像模型构建与应用研究[J]. 中国管理科学, 2021, 29(10): 224-235. |
12 | Yan H X, Yu S K, Lin Y Q. Research on the construction and application of the customer value portrait model of industrial power enterprise in China[J]. Chinese Journal of Management Science, 2021, 29(10): 224-235. |
13 | 黄家娥, 李静, 胡潜. 基于企业画像的行业信息精准服务研究[J]. 情报科学, 2022,40(2): 99-104+112. |
13 | Huang J E, Li J, Hu Q. The framework and function of industry information precision service based on enterprise profile[J]. Information Science, 2022, 40(2): 99-104+112. |
14 | 郭宇, 孙振兴, 刘文晴,等. 基于数据驱动的移动图书馆UGC用户画像研究[J]. 情报理论与实践, 2022, 45(1): 30-37. |
14 | Guo Y, Sun Z X, Liu W Q, et al. Research on UGC user protrait of mobile library based on data driven[J]. Information Studies: Theory & Application, 2022, 45(1): 30-37. |
15 | 李宇佳, 王益成. 基于用户动态画像的学术新媒体信息精准推荐模型研究[J]. 情报科学, 2022, 40(1): 88-93+101. |
15 | Li Y J, Wang Y C. Accurate recommendation model of academic new media information based on user dynamic profile[J]. Information Science, 2022, 40(1): 88-93+101. |
16 | 王丙参, 魏艳华, 张贝贝. 函数型数据聚类算法的评价与比较[J]. 统计与决策, 2021, 37(16): 38-52. |
16 | Wang B C, Wei Y H, Zhang B B. Evaluation and comparison of functional data clustering algorithms[J]. Statistics & Decision, 2021, 37(16): 38-52. |
17 | Kaufman L, Rousseeuw P J. Finding groups in data: An introduction to cluster analysis[M]. Hoboken: John Wiley & Sons, Inc., 2005. |
18 | 白晓清, 赵瞻, 鲍海波. 基于CLARA算法的考虑时序特性分布式电源规划[J]. 电力自动化设备, 2016, 36(5): 14-22+29. |
18 | Bai X Q, Zhao Z, Bao H B. DG planning based on CLARA algorithm with consideration of timing characteristics[J] Electric Power Automation Equipment, 2016, 36(5): 14-22+29. |
19 | Wang X Y. Forecasting and application for securities market based on multi-factor model and CART classification regression tree algorithm[J]. Advances in Applied Mathematics, 2021, 10(3):654-665. |
20 | 张玮, 杨善林, 刘婷婷. 基于CART和自适应Boosting算法的移动通信企业客户流失预测模型[J]. 中国管理科学, 2014, 22(10): 90-96. |
20 | Zhang W, Yang S L, Liu T T. Customer churn prediction in mobile communication enterprises based on CART and boosting algorithm[J]. Chinese Journal of Management Science, 2014, 22(10): 90-96. |
21 | Qian C, Yang M, Li P Q, et al. Application of customer segmentation for electronic toll collection: A case study[J]. Journal of Advanced Transportation, 2018, 2018:1-9. |
22 | 段金利, 张岐山. 基于基尼系数-交叉效率的多属性决策方法[J]. 控制与决策,2018, 33(6): 1123-1128. |
22 | Duan J L, Zhang Q S. Multi-attribute decision-making method based on Gini coefficient and cross efficiency[J]. Control and Decision, 2018, 33(6): 1123-1128. |
23 | Lawson R G, Jurs P C. New index for clustering tendency and its application to chemical problems[J]. Journal of Chemical Information and Computer Sciences, 1990, 30(1): 36-41. |
24 | Han J W, Kamber M, Pei J. Data mining: Concepts and techniques[M]. (Third Edition). San Francisco: Morgan Kaufmann, 2011. |
25 | Rousseeuw P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
26 | Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. |
27 | Wilson D L. Asymptotic properties of nearest neighbor rules using edited data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1972, 2(3): 408-421. |
28 | Hyndman R J, Koehler A B. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 2006, 22(4): 679-688. |
29 | Velez D R, White B C, Motsinger A A, et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction[J]. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society, 2007, 31(4): 306-315. |
30 | McHugh M L. Interrater reliability: The kappa statistic[J]. Biochemia Medica, 2012, 22(3): 276-282. |
31 | Chandril C G. Hr analytics dataset[EB/OL]. (2018-01-03).[2022-04-06]. . |
32 | 陈敏灵, 王孝孝. 职业倦怠:内涵、测量与形成机理[J]. 外国经济与管理, 2019, 41(8): 86-99. |
32 | Chen M L, Wang X X. Job burnout: Connotation, measurement and formation mechanism[J]. Foreign Economics & Management, 2019, 41(8): 86-99. |
33 | 赵慧娟,龙立荣. 基于多理论视角的个人-环境匹配、自我决定感与情感承诺研究[J]. 管理学报, 2016, 13(6): 836-846. |
33 | Zhao H J, Long L R. Person-environment fit, feeling of self-determination and affective organizational commitment: A study based on multiple theory[J]. Chinese Journal of Management, 2016, 13(6): 836-846. |
/
〈 |
|
〉 |