[1] 中国网信网. CNNIC发布第44次《中国互联网络发展状况统计报告》[EB/OL]. (2019-8-30) [2019-08-30]. http://www.cac.gov.cn/2019-08/30/c_1124939590.htm.China network information network. CNNIC released the 44th Statistical Report on Internet Development in China[EB/OL]. (2019-8-30) [2019-08-30]. http://www.cac.gov.cn/2019-08/30/c_1124939590.htm.
[2] 李光敏, 陈炽, 邢江,等. 网络文本评论中产品特征抽取综述[J]. 现代情报, 2016(8):168-173.Li Guangmin, Chen Chi, Xing Jiang, et al. Overview of extracting product feature from text reviews[J]. Journal of Modern Information, 2016(8):168-173.
[3] 闵庆飞, 覃亮, 张克亮. 影响在线评论有用性的因素研究[J]. 管理评论, 2017, 29(10): 95-107.Min Qingfu, Qin Liang, Zhang Keliang. Factors affecting the perceived usefulness of online reviews[J]. Management Review, 2017, 29(10): 95-107.
[4] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis[J]. International Journal of Computer Applications, 2005, 7(5): 347-354.
[5] Ye Qiang, Law R, Gu Bin. The impact of online user reviews on hotel room sales[J]. International Journal of Hospitality Management, 2009, 28(1): 180-182.
[6] Schindler R M, Bickart B. Perceived helpfulness of online consumer reviews: the role of message content and style[J]. Journal of Consumer Behaviour, 2012, 11(3): 234-243.
[7] Sen S, Lerman D. Why are you telling me this? An examination into negative consumer reviews on the Web[J]. Journal of Interactive Marketing, 2007, 21(4): 76-94.
[8] Ghose A, Ipeirotis P G. Designing novel review ranking systems: predicting the usefulness and impact of reviews[J]. International Conference on Electronic Commerce 2007, 60: 303-310.
[9] 邓卫华,张宇. 在线评论信息内容对阶段性有用性评价的影响研究[J]. 情报理论与实践, 2018, 4(8): 90-95.Deng Weihua, Zhang Yu. Study on the effects of online review content on periodical usefulness evaluation[J]. Information Studies: theory & application, 2018, 4(8): 90-95.
[10] 刘伟, 徐鹏涛. O2O电商平台在线点评有用性影响因素的识别研究——以餐饮行业O2O模式为例[J]. 中国管理科学, 2016, 24(5): 168-176.Liu Wei, Xu Pengtao. A study on influencing factors of the helpfulness of online reviews in O2O of restaurant industry:Based on Tobit model[J]. Chinese Journal of Management Science, 2016, 24(5): 168-176.
[11] 黄静, 朱丽娅, 周南. 企业家微博信息对其形象评价的影响机制研究[J]. 管理世界, 2014(9):107-119.Huang Jing, Zhu Liya, Zhou Nan. A study on the impact of the influencing mechanism of entrepreneur’s micro-blogging information on the evaluation of the image of the entrepreneur[J]. Journal of Management World, 2014(9):107-119.
[12] Lipizzi C, Iandoli L, Marquez R, et al. Extracting and evaluating conversational patterns in social media: a socio-semantic analysis of customers’ reactions to the launch of new products using Twitter streams[J]. International Journal of Information Management, 2015, 35(4): 490-503.
[13] Huang Ni, Burtch G, Hong Yili, et al. Effects of multiple psychological distances on construal and consumer evaluation: a field study of online reviews[J]. Journal of Consumer Psychology, 2016, 26(4): 474-482.
[14] Jiang Guoyin, Tadikamalla P R, Shang J, et al. Impacts of knowledge on online brand success: an agent-based model for online market share enhancement[J]. European Journal of Operational Research, 2016, 248(3): 1093-1103.
[15] Al-Daihani S M, Abrahams A. A text mining analysis of academic libraries’ tweets[J]. The Journal of Academic Librarianship, 2016, 42(2): 135-143.
[16] Chen Z, Lurie N H. Temporal contiguity and negativity bias in the impact of online word of mouth[J]. 2013, 50(4): 463-476.
[17] Filieri R, Mcleay F. E-WOM and accommodation: an analysis of the factors that influence travelers' adoption of information from online reviews[J]. Journal of Travel Research, 2013, 53(1): 44-57.
[18] Korfiatis N, García-Bariocanal E, Sánchez-Alonso S. Evaluating content quality and helpfulness of online product reviews: the interplay of review helpfulness vs. review content[J]. Electronic Commerce Research and Applications, 2012, 11(3): 205-217.
[19] Akapnar G. How automated feedback through text mining changes plagiaristic behavior in online assignments[J]. Computers & Education, 2015, 87: 123-130.
[20] Cao Qing, Duan Weijing, Gan Qiwei. Exploring determinants of voting for the “helpfulness” of online user reviews: a text mining approach[J]. Decision Support Systems, 2011, 50(2): 511-521.
[21] Reyes A, Rosso P. Making objective decisions from subjective data: detecting irony in customer reviews[J]. Decision Support Systems, 2012, 53(4): 754-760.
[22] Abrahams A S, Jiao Jian, Wang G A, et al. Vehicle defect discovery from social media[J]. Decision Support Systems, 2012, 54(1): 87-97.
[23] 谭学清, 何珊. 用户情境下基于信息增益和项目的协同过滤推荐技术研究[J]. 情报杂志, 2014(7): 165-170.Tan Xueqing, He Shan. Study of context-aware recommendation technology based on information gain and item-based collaborative filtering[J]. Journal of Intelligence, 2014(7): 165-170.
[24] 刘忠宝, 赵文娟. 基于互信息的不平衡Web文本分类方法研究[J]. 情报科学, 2015(10): 23-26.Liu Zhongbao, Zhao Wenjuan. Imbalanced web text classification method based on mutual information[J]. Information Science, 2015(10): 23-26.
[25] Hatzivassiloglou V, Mckeown K R. Predicting the semantic orientation of adjectives[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics, Suntec, Singapore, August 2-7, 2009.
[26] Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania, July 8-10, 2002.
[27] Riloff E, Wiebe J. Learning extraction patterns for subjective expressions[C]//Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, Sapporo, Japan, July 11-12, 2003.
[28] 严仲培, 陆文星, 束柬,等. 面向旅游在线评论情感词典构建方法[J]. 计算机应用研究, 2019, 36(6): 1660-1664.Yan Zhongpei, Lu Wenxing, Shu Jian, et al. Construction method of sentiment lexicon for online travel reviews[J]. Application Research of Computers, 2019, 36(6): 1660-1664.
[29] 王伟, 王洪伟, 孟园. 协同过滤推荐算法研究:考虑在线评论情感倾向[J]. 系统工程理论与实践, 2014, 34(12): 3238-3249.Wang Wei, Wang Hongwei, Meng Yuan. The collaborative filtering recommendation based on sentiment analysis of online reviews[J]. Systems Engineering - Theory & Practice, 2014, 34(12): 3238-3249.
[30] 尹裴, 王洪伟.面向产品特征的中文在线评论情感分类:以本体建模为方法[J]. 系统管理学报, 2016, 25(1): 103-114.Yin Pei, Wang Hongwei. Sentiment classification for Chinese online reviews at product feature level through domain ontology method[J]. Journal of Systems & Management, 2016, 25(1): 103-114.
[31] Joachims T. Text categorization with suport vector machines: learning with many relevant features[C]//Proceedings of European Conference on Machine Learning, Chemnitz, Germany, April 21-23, 1998.
[32] 何跃, 邓唯茹, 张丹. 中文微博的情绪识别与分类研究[J]. 情报杂志, 2014(2): 136-139.He Yue, Deng Weiru, Zhang Dan. Study on sentiments recognition and classification of Chinese microblog[J]. Journal of Intelligence, 2014(2): 136-139.
[33] 张华鑫, 庞建刚. 基于SVM和KNN的文本分类研究[J]. 现代情报, 2015(5): 73-77.Zhang Huaxin, Pang Jiangang. Research on text classification based on SVM and KNN[J]. Journal of Modern Information, 2015(5): 73-77.
[34] Sun Tao, Youn S, Wu Guohua, et al. Online word-of-mouth: an exploration of its antecedents and consequences[J]. Journal of Computer-Mediated Communication, 2006, 11(4): 1104-1127.
[35] Ert E, Fleischer A, Magen N. Trust and reputation in the sharing economy: the role of personal photos in Airbnb[J]. Tourism Management, 2016, 55: 62-73.
[36] 殷国鹏, 刘雯雯, 祝珊. 网络社区在线评论有用性影响模型研究——基于信息采纳与社会网络视角[J]. 图书情报工作, 2012(16): 140-147.Yin Guopeng, Liu Wenwen, Zhu Shan. What makes a helpful online review: the perspective of information adoption and social network[J]. Library and Information Service, 2012(16): 140-147.
[37] Herr P M, Kardes F R, John K. Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective[J]. Journal of Consumer Research, 1991, 17(4): 454-462.
[38] Bone P F. Word-of-mouth effects on short-term and long-term product judgments[J]. Journal of Business Research, 1995, 32(3): 213-223.
[39] Park D H, Kim S. The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews[J]. Electronic Commerce Research & Applications, 2007, 7(4): 48-57.
[40] Garbarino E, Strahilevitz M. Gender differences in the perceived risk of buying online and the effects of receiving a site recommendation[J]. Journal of Business Research, 2004, 57(7): 768-775.
[41] 张艳辉, 李宗伟. 在线评论有用性的影响因素研究:基于产品类型的调节效应[J]. 管理评论, 2016, 28(10): 123-132.Zhang Yanhui, Li Zongwei. Analysis of the factors that influence online reviews helpfulness: based on the regulating effect of product type[J]. Management Review, 2016, 28(10): 123-132.
[42] 杜学美, 丁璟妤, 谢志鸿, 等. 在线评论对消费者购买意愿的影响研究[J]. 管理评论, 2016, 28(3): 173-183.Du Xuemei, Ding Jingyu, Xie Zhihong, et al. An empirical study on the impact of online reviews on consumers’ purchasing intention[J]. Management Review, 2016, 28(3): 173-183.
[43] Baek H, Ahn J, Choi Y. Helpfulness of online consumer reviews: readers’ objectives and review cues[J]. International Journal of Electronic Commerce, 2014, 17(2): 99-126.
[44] Guo Yue, Barnes S J, Jia Qiong. Mining meaning from online ratings and reviews: tourist satisfaction analysis using latent dirichlet allocation[J]. Tourism Management, 2017, 59: 467-483.
[45] 陶晓波, 张欣瑞, 杨建坤, 等.在线评论、感知有用性与新产品扩散的关系研究[J]. 中国软科学, 2017(7): 162-171.Tao Xiaobo, Zhang Xinrui, Yang Jiankun, et al. Online reviews, perceived usefulness and new product diffusion[J]. China Soft Science, 2017(7): 162-171.
[46] Hu Nan, Koh N S, Reddy S K. Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales[J]. Decision Support Systems, 2014, 57: 42-53.
[47] 石文华, 张绮, 蔡嘉龙. 在线评论矛盾性对消费者矛盾态度和购买意愿的影响研究[J]. 管理评论, 2018, 30(7): 77-88.Shi Wenhua, Zhang Qi, Cai Jialong. The impact of contradictory online reviews on ambivalent attitude and purchase intention[J]. Management Review, 2018, 30(7): 77-88.
[48] 刘通, 张聪, 吴鸣远. 在线评论中基于边界平均信息熵的产品特征提取算法[J]. 系统工程理论与实践, 2016, 36(9): 2416-2423.Liu Tong, Zhang Cong, Wu Mingyuan. An algorithm of online product feature extraction based on boundary average entropy[J]. Systems Engineering-Theory & Practice, 2016, 36(9): 2416-2423.
[49] 唐晓波, 胡华. 中文社会化媒体的本体概念抽取研究[J]. 情报科学, 2014, 32(4): 9-15.Tang Xiaobo, Hu Hua. Research on ontology extraction for Chinese social media[J]. Information Science, 2014, 32(4): 9-15.
[50] Yi J, Nasukawa T,Bunescu R, et al. Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques[C]//Proceedings of IEEE International Conference on Data Mining, Melbourne, Florida, November 19-22, 2003.
[51] 唐守忠, 齐建东. 一种结合关键词与共现词对的向量空间模型[J]. 计算机工程与科学, 2014, 36(5): 971-976.Tang Shouzhong, Qi Jiandong. Vector space model based on keywords and co-occurrence word pairs[J]. Computer Engineering & Science, 2014, 36(5): 971-976.
[52] 吴光远, 何丕廉, 曹桂宏, 等. 基于向量空间模型的词共现研究及其在文本分类中的应用[J]. 计算机应用, 2003(S1): 138-140+145.Wu Guangyuan, He Pilian, Cao Guihong, et al. Word co-occurrence study based on vector space model and its application in text classification[J]. Computer Applications, 2003(S1): 138-140+145.
[53] 任莉莉, 方元康. 基于词汇链与互信息的关键词抽取研究[J]. 池州学院学报, 2013, 27(6): 48-50.Ren Lili, Fang Yuankang. Study on keyword extraction based on word chain and mutual information[J]. Journal of Chizhou University, 2013, 27(6): 48-50.
[54] 朱征宇, 孙俊华. 改进的基于《知网》的词汇语义相似度计算[J]. 计算机应用, 2013, 33(8): 2276-2279+2288.Zhu Zhengyu, Sun Junhua. Improved vocabulary semantic similarity calculation based on HowNet[J]. Journal of Computer Applications, 2013, 33(8): 2276-2279+2288.
[55] 葛斌, 李芳芳, 郭丝路, 等. 基于知网的词汇语义相似度计算方法研究[J]. 计算机应用研究, 2010, 27(9): 3329-3333.Ge Bin, Li Fangfang, Guo Silu, et al. Word’s semantic similarity computation method based on HowNet[J]. Application Research of Computers, 2010, 27(9): 3329-3333.
[56] 江敏, 肖诗斌, 王弘蔚, 等. 一种改进的基于《知网》的词语语义相似度计算[J]. 中文信息学报, 2008, 5(2): 59-76.Jiang Min, Xiao Shibin, Wang Hongwei, et al. An improved word similarity computing method based on HowNet[J]. Journal of Chinese Information Processing, 2008, 5(2): 59-76.
[57] 韩雪婷, 李炜, 沈奇威. 用户评论中产品特征的抽取及聚类[J]. 计算机系统应用, 2013, 22(5): 188-192.Han Xueting, Li Wei, Shen Qiwei. Extracting and clustering product features from user reviews[J]. Computer Systems & Applications, 2013, 22(5): 188-192.
[58] 杨源, 马云龙, 林鸿飞. 评论挖掘中产品属性归类问题研究[J]. 中文信息学报, 2012, 26(3): 104-108+115.Yang Yuan, Ma Yunlong, Lin Hongfei. Clustering product features in opinion mining[J]. Journal of Chinese Information Processing, 2012, 26(3): 104-108+115.
[59] 邓楠, 余本功. 基于情感词向量和BLSTM的评论文本情感倾向分析[J]. 计算机应用研究, 2018, 35(12): 3547-3550.Deng Nan, Yu Bengong. Sentiment orientation analysis of review text based on sentiment word embedding and BLSTM[J]. Application Research of Computers, 2018, 35(12): 3547-3550.
[60] 张洪. 聚类集成算法在客户细分中的研究及应用[D]. 合肥: 安徽大学, 2016.Zhang Hong. Research and application of clustering ensemble algorithm in customer segmentation[D]. Hefei: Anhui University, 2016.
[61] 胡新明, 夏火松. 在线评论中用户商品属性偏好识别方法研究[J]. 情报杂志, 2012, 31(9): 197-201.Hu Xinming, Xia Huosong. Research of methods of recognizing user preference of product attributes from online product reviews[J]. Journal of Intelligence, 2012, 31(9): 197-201.