[1] 孟猛猛, 雷家骕, 焦捷. 专利质量、知识产权保护与经济高质量发展[J]. 科研管理, 2021, 42(1): 135-145.Meng Mengmeng, Lei Jiasu, Jiao Jie. Patent quality, intellectual property protection and high-quality economic development[J]. Science Research Management, 2021, 42(1): 135-145.
[2] 杨思思, 戴磊, 郝屹. 专利经济价值度通用评估方法研究[J]. 情报学报, 2018, 37(1): 109-114.Yang Sisi, Dai Lei, Hao Yi. Study on the common evaluation methodology of patented economic value[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(1): 109-114.
[3] 毛昊, 刘夏, 党建伟. 对标世界一流专利审查机构的制度经验与改革应对[J]. 中国软科学, 2020(2): 11-25.Mao Hao, Liu Xia, Dang Jianwei. An institutional analysis and critique to CNIPA: lessons from world-class patent offices[J]. China Soft Science, 2020(2): 11-25.
[4] 尹志锋, 申媛, 刘梦瑶. 专利质量层级、专利管理能力与专利实施水平[J]. 中国科技论坛, 2020(10): 28-37.Yin Zhifeng, Shen Yuan, Liu Mengyao. Patent quality, patent management capacity and patent implementation[J]. Forum on Science and Technology in China, 2020(10): 28-37.
[5] 胡学钢, 杨恒宇, 林耀进, 等. 基于协同过滤的专利TRIZ分类方法[J]. 情报学报, 2018, 37(5): 512-518.Hu Xuegang, Yang Hengyu, Lin Yaojin, et al. Study on classification of patents collaborative filtering oriented to TRIZ[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(5): 512-518.
[6] 包翔, 刘桂锋, 杨国立. 基于多示例学习框架的专利文本分类方法研究[J]. 情报理论与实践, 2018, 41(11): 144-148.Bao Xiang, Liu Guifeng, Yang Guoli. Patent text classification method based on multi-instance learning[J]. Information Studies:Theory & Application, 2018, 41(11): 144-148.
[7] 佟昕瑀, 赵蕊洁, 路永和. 基于预训练模型的多标签专利分类研究[J]. 数据分析与知识发现, 2022, 6(Z1): 129-137.Tong Xinyu, Zhao Ruijie, Lu Yonghe. Multi-label patent classification with pre-training model[J]. Data Analysis and Knowledge Discovery, 2022, 6(Z1): 129-137.
[8] 吕璐成, 韩涛, 周健, 等. 基于深度学习的中文专利自动分类方法研究[J]. 图书情报工作, 2020, 64(10): 75-85.Lyu Lucheng, Han Tao, Zhou Jian, et al. Research on the method of Chinese patent automatic classification based on deep learning[J]. Library and Information Service, 2020, 64(10): 75-85.
[9] 朱雪忠, 徐晨倩. 337调查下的企业专利诉讼策略博弈分析[J]. 科研管理, 2021, 42(6): 112-119.Zhu Xuezhong, Xu Chenqian. The game analysis of enterprise patent litigation strategies under Section 337 Investigation[J]. Science Research Management, 2021, 42(6): 112-119.
[10] 苏媛, 李广培. 绿色技术创新能力、产品差异化与企业竞争力—基于节能环保产业上市公司的分析[J]. 中国管理科学, 2021, 29(4): 46-56.Su Yuan, Li Guangpei. Green technological innovation ability, product differentiation and enterprise competitiveness: analysis of energy saving and environmental protection industry listed companies[J]. Chinese Journal of Management Science, 2021, 29(4): 46-56.
[11] 汪明月, 李颖明. 多主体参与的绿色技术创新系统均衡及稳定性[J]. 中国管理科学, 2021, 29(3): 59-70.Wang Mingyue, Li Yingming. Equilibrium and stability of green technology innovation system with multi-agent participation[J]. Chinese Journal of Management Science, 2021, 29(3): 59-70.
[12] 吴洁, 王建刚, 张运华, 等. 技术创新联盟中知识转移价值增值影响因素的实证研究[J]. 中国管理科学, 2014, 22(S1): 531-538.Wu Jie, Wang Jiangang, Zhang Yunhua, et al. Empirical research on influential factors of knowledge transfer value-added in technology innovation alliance[J]. Chinese Journal of Management Science, 2014, 22(S1): 531-538.
[13] Chang S B, Lai K K, Chang Shumin. Exploring technology diffusion and classification of business methods: using the Patent Citation Network[J]. Technological forecasting and social change, 2009, 76(1): 107-117.
[14] Lai K K, Wu S J. Using the patent cocitation approach to establish a new patent classification system[J]. Information processing and management, 2005, 41(2): 313-330.
[15] Fang Lintao, Zhang Le, Wu Han, et al. Patent2Vec: Multi-view representation learning on patent-graphs for patent classification[J]. World Wide Web, 2021, 24(5): 1791-1812.
[16] Fall C J, Torcsvari A, Benzineb K, et al. Automated categorization in the international patent classification[C]//Proceedings of ACM SIGIR forum: Association for Computing Machinery, Toronto, Canada, July 28 to August 1, 2003.
[17] 李程雄, 丁月华, 文贵华. SVM-KNN 组合改进算法在专利文本分类中的应用[J]. 计算机工程与应用, 2006(20): 193-195.Li Chengxiong, Ding Yuehua, Wen Guihua. Application of SVM- KNN combination improvement algorithm on patent text classification[J]. Computer Engineering and Applications, 2006(20): 193-195.
[18] 贾杉杉, 刘畅, 孙连英, 等. 基于多特征多分类器集成的专利自动分类研究[J]. 数据分析与知识发现, 2017, 1(8): 76-84.Jia Shanshan, Liu Chang, Sun Lianying, et al. Patent classification based on multi-feature and multi-classifier integration[J]. Data Analysis and Knowledge Discovery, 2017, 1(8): 76-84.
[19] Hu Jie, Li Shaobo, Yao Yong, et al. Patent keyword extraction algorithm based on distributed representation for patent classification[J]. Entropy, 2018, 20(2): 104.
[20] Xia Bing, Li Baoan, Lv Xueqiang. Research on patent document classification based on deep learning[C]//Proceedings of 2nd International Conference on Artificial Intelligence and Industrial Engineering, Beijing, China, November 20-21, 2016.
[21] Hu Jie, Li Shaobo, Hu Jianjun, et al. A hierarchical feature extraction model for multi-label mechanical patent classification[J]. Sustainability, 2018, 10(1): 219.
[22] Risch J, Krestel R. Domain-specific word embeddings for patent classification[J]. Data Technologies and Applications, 2019, 53(1): 108- 122.
[23] 胡杰, 李少波, 于丽娅, 等. 基于卷积神经网络与随机森林算法的专利文本分类模型[J]. 科学技术与工程, 2018, 18(6): 268-272.Hu Jie, Li Shaobo, Yu Liya, et al. A patent classification model based on convolutional neural networks and rand forest[J]. Science Technology and Engineering, 2018, 18(6): 268-272.
[24] 马建红, 王瑞杨, 姚爽, 等. 基于深度学习的专利分类方法[J]. 计算机工程, 2018, 44(10): 215-220.Ma Jianhong, Wang Ruiyang, Yao Shuang, et al. Patent classification method based on depth learning[J]. Computer Engineering, 2018, 44(10): 209-214.
[25] Li Shaobo, Hu Jie, Cui Yuxin, et al. Deep Patent:Patent classification with convolutional neural networks and word embedding[J]. Scientometrics, 2018, 117(2): 721-744.
[26] Roudsari A H, Afshar J, Lee C C, et al. Multi-label patent classification using attention-aware deep learning model[C]// Proceedings of 2020 IEEE International Conference on Big Data and Smart Computing, Busan, Korea, February 19-22, 2020.
[27] Tang Pingjie, Jiang Meng, Xia Bryan, et al. Multi-label patent categorization with non-local attention-based graph convolutional network[C]// Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, February 7-12, 2020.
[28] 余本功, 张培行. 基于双通道特征融合的WPOS-GRU专利分类方法[J]. 计算机应用研究, 2020, 37(3): 655-658.Yu Bengong, Zhang Peihang. WPOS-GRU patent classification method based on two-channel feature fusion[J]. Application Research of Computers, 2020, 37(3): 655-658.
[29] 吴洁, 桂亮, 刘鹏. 基于图卷积网络的高质量专利自动识别方案研究[J]. 情报杂志, 2022, 41(1): 88-95+124.Wu Jie, Gui Liang, Liu Peng. Indicator and textual features-based patent evaluation with graph convolutional networks[J]. Journal of Intelligence, 2022, 41(1): 88-95+124.
[30] 宋艳辉, 邱均平. 发明人专利文献耦合与发明人德温特分类号耦合比较研究——以非专利实施主体为例[J]. 情报学报, 2021, 40(4): 364-374.Song Yanhui, Qiu Junping. A comparative study of inventor bibliographic-patent coupling and inventor-patent-classification-coupling—non-practicing entities as an example[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(4): 364-374.
[31] 赵阳, 文庭孝. 专利引证动机分析[J]. 情报理论与实践, 2017, 40(7): 28-32+16.Zhao Yang, Wen Tingxiao. Motivation analysis of patent citation[J]. Information Studies:Theory & Application, 2017, 40(7): 28-32+16.
[32] 张娴, 方曙, 王春华. 专利引证视角下的技术演化研究综述[J]. 科学学与科学技术管理, 2016, 37(3): 58-67.Zhang Xian, Fang Shu, Wang Chunhua. Review on technology evolution research from patent citation perspective[J]. Science of Science and Management of S.& T., 2016, 37(3): 58-67.
[33] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference On Learning Representations (ICLR),Toulon, France, April 24-26,2017.
[34] Yao Liang, Mao Chengsheng, Luo Yuan. Graph convolutional networks for text classification[C] //Proceedings of Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence(AAAI),Hawaii, USA, January 27 to February 1, 2019.
[35] Wu Shu, Tang Yuyuan, Zhu Yanqiao, et al. Session-based recommendation with braph neural networks[C]//Proceedings of Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence(AAAI), Hawaii, USA, January 27 to February 1, 2019.