主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

The Volatility Co-movement of Various Stock Markets based on High-frequency Data

Expand
  • 1. School of Business Administration, South China University of Technology, Guangzhou 510640, China);
    2. Lingnan College, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2016-09-27

  Revised date: 2017-05-08

  Online published: 2018-04-20

Abstract

The financial globalization facilitates the flow of capital and good across the countries, and thus improves the operational efficiency of the financial markets. At the same time, the financial globalization enhances the risk transmission and thus leads to high volatility of financial markets.Therefore, the co-movement of financial markets is an important issue for risk managements, asset pricing and portfolio management.
A MHAR-DCC model with a Markov regime switching structure is developed to investigate the volatility co-movement of stock markets by employingthe high-frequency data from the six major stock markets in the world from 1 January 2010 to 31 December 2013.
The structural changes in co-volatility are identifed by introducing an exogenous stochastic component that follows a Markov regime switching process. There are more and longer-duration break periods identified by the model with the normal distribution as compared to that with the student-t distribution. In addition, the positive impact that scales up the covariance dominates the breakdown periods.There exhibit significantly positive correlations between the stock market within the same geographyregions as well as significantly positive correlations between the US stock market and the other markets, indicating the leading position of the US stock market in the co-movement of world stock markets.

Cite this article

LUO Jia-wen, CHEN Lang-nan . The Volatility Co-movement of Various Stock Markets based on High-frequency Data[J]. Chinese Journal of Management Science, 2018 , 26(2) : 116 -125 . DOI: 10.16381/j.cnki.issn1003-207x.2018.02.013

References

[1] Bollerslev T. Modelling the coherence in short-run nominal exchange rates:A multivariate generalized arch model[J].Review of Economics & Statistics, 1990,72(3):498-505.

[2] Engle R F, Kroner K F. Multivariate simultaneous generalized ARCH[J]. Econometric theory,1995,11(01):122-150.

[3] Engle R. Dynamic conditional correlation:A simple class of multivariate generalized autoregressive conditional heteroskedasticity models[J].Journal of Business & Economic Statistics, 2002, 20(3):339-350.

[4] Bauwens L, Laurent S, Rombouts J V. Multivariate GARCH models:A survey[J]. Journal of Applied Econometrics,2006, 21(1):79-109.

[5] Bekaert G, Hodrick R J, Zhang, Xiaoyan. International stock return comovements[J]. The Journal of Finance,64(6):2591-2626.

[6] Beine M, Cosma A, Vermeulen R. The dark side of global integration:Increasing tail dependence[J]. Journal of Banking & Finance, 2010, 34(1):184-192.

[7] Rapach D E, Strauss J K, Zhou G. International stock return predictability:What is the role of the United States?[J]. Journal of Finance, 2013, 68(4):1633-1662.

[8] Bubák V, Ko?enda E, ikeš, F. Volatility transmission in emerging European foreign exchange markets[J]. Journal of Banking & Finance, 2011, 35(11), 2829-2841.

[9] Sou?ek M, Todorova N. Realized volatility transmission between crude oil and equity futures markets:A multivariate HAR approach[J]. Energy Economics, 2013, 40:586-597.

[10] 刘晓星, 段斌, 谢福座. 股票市场风险溢出效应研究:基于EVT-Copula-CoVaR模型的分析[J]. 世界经济, 2011,(11):145-159.

[11] 熊正德, 文慧, 凌语蓉. 基于时频分析的农产品期货市场与外汇市场联动关系研究[J].中国管理科学, 2013,21(S1):255-263.

[12] 熊正德, 文慧, 熊一鹏. 我国外汇市场与股票市场间波动溢出效应实证研究——基于小波多分辨的多元BEKK-GARCH(1,1)模型分析[J].中国管理科学, 2015, 23(4):30-38.

[13] 王璐. 国际多元化下多维金融市场相关结构测度——以金砖国家新兴市场为对象[J]. 数理统计与管理, 2015,(3):498-512.

[14] 王鹏,魏宇,王建琼. 不同矩属性波动模型对中国股市波动率的预测精度分析[J].数理统计与管理,2010, 29(3):550-559.

[15] 何德旭, 苗文龙. 国际金融市场波动溢出效应与动态相关性[J].数量经济技术经济研究, 2015,(11):23-40.

[16] 夏南新. 国际金融市场波动非线性因果性和溢出效应[J].管理科学学报, 2016, 19(3):64-76.

[17] Jin Xin, Maheu J M. Modeling covariance breakdowns in multivariate GARCH[J]. Journal of Econometrics, 2016,194(1):1-23.

[18] Vrugt J A, TerBraak C J F, Diks C G H, et al. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J].International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):273-290.

[19] Ahoniemi K, Lanne M. Overnight stock returns and realized volatility[J]. International Journal of Forecasting, 2005, 29(4):592-604.

[20] Koopman S J, Jungbacker B, Hol E. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements[J]. Journal of Empirical Finance, 2005, 12(3):445-475.

[21] Martens M, Poon S H. Returns synchronization and daily correlation dynamics between international stock markets[J]. Journal of Banking & Finance, 2001, 25(10):1805-1827.

[22] Barndorff-Nielsen O E, Hansen P R, Lunde A,et al. Realized kernels in practice:trades and quotes[J].The Econometrics Journal, 2009, 12(3):C1-C32.

[23] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2):174-196.

[24] Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992, 7(4):457-472.
Outlines

/