主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Mechanism and Quantity Modeling of Information Diffusion in Social Networks

Expand
  • School of Information, Renmin University of China, Beijing 100872, China

Received date: 2016-06-29

  Revised date: 2017-08-24

  Online published: 2018-02-10

Abstract

With more sources, higher speed and broader spreading, the public opinions in the network are more difficult to be monitored and controlled. In order to improve the ability of controlling the online public opinions, it is necessary to model the process of information diffusion quantitatively so that we can understand the characteristics of information dissemination. In this paper' the mechanism of information diffusion is first analyzed from the micro perspective, considering both the structural characteristics of networks and the time efficiency of controlling. By taking the state of node into consideration, which corresponds to a user's online or offline, the traditional independent cascade mode is developed into discrete-time oriented bi-probability cascade model. Then, the process of information diffusion is analyzed and quantified from the macro perspective. The dynamic diffusion equation with the quality of information, features of the network and the impact from external platforms is established. Compared with previous studies using only model simulations or numerical fitting, the process of information diffusion in social networks is descrbed more accurately. The experimental results show various forms of information dissemination with different characteristics. Besides, it also shows that less time would be taken for information to burst out with larger size of user network, closer relationship of users and higher quality of information. These findings are helpful to predict the trend of information diffusion and make it easier to recognize important propagators in time when managing the public opinions in social networks.

Cite this article

WANG Yi, LIANG Xun, FU Hong-jiao, XU Zhi-ming . Mechanism and Quantity Modeling of Information Diffusion in Social Networks[J]. Chinese Journal of Management Science, 2017 , 25(12) : 147 -157 . DOI: 10.16381/j.cnki.issn1003-207x.2017.12.016

References

[1] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,Washington D C,August,24-27,2003.

[2] Saito K, Kimura M, Ohara K, et al. Learning continuous-time information diffusion model for social behavioral data analysis[M]//Advances in Machine Learning. Springer Berlin Heidelberg, 2009:322-337.

[3] Saito K, Kimura M, Ohara K, et al. Selecting information diffusion models over social networks for behavioral analysis[M]//Zhou Zhihua,Washio T.Machine learning and knowledge discovery in databases. Berlin-Heidelberg:Springer,2010:180-195.

[4] 万圣贤, 郭嘉丰, 兰艳艳, 等. 基于传播模拟的消息流行度预测[J]. 中文信息学报, 2014,28(3):68-74.

[5] Chen Wei, Wang Yajun, & Yang Siyu. Efficient influence maximization in social networks[C]//proceedings of the 15th ACM SIGKDD International Conference on Knowledge discovery and Data Mining,Paris,France,June 28-July 1,2009.

[6] 朱湘, 贾焰, 聂原平. 基于微博的事件扩散分析[J]. 计算机研究与发展, 2015, 52(2):437-444.

[7] Saito K, Nakano R, Kimura M. Prediction of information diffusion probabilities for independent cascade model[M]//Lovrek I, Howlett R J,Jian L C.Knowledge-based intelligent information and engineering systems. Berlin-Heidelberg:Springer, 2008:67-75.

[8] Goyal A, Bonchi F, Lakshmanan L V S. Learning influence probabilities in social networks[C]//Proceedings of the third ACM international conference on Web search and data mining,New York,us,February 04-06,2010.

[9] 郭静, 曹亚男, 周川. 基于线性阈值模型的影响力扩散权重学习[J]. 电子与信息学报, 2014, 36(8):1804-1809.

[10] Srivastava J,Pathak N, Banerjee A. A generalized linear threshold model for multiple cascades[C]//Proceedings of the 13th International Conference on Data Ming,December13-17,2010.

[11] He Xinran, Songuojie G, Chen Wei, et al. Influence blocking maximization in social networks under the competitive linear threshold model[J]//Compting Science,2011.

[12] Litou I, Kalogeraki V, Katakis I. Real-time and cost-effective limitation of misinformation propagation[C]//Proceedings of the 17th TEEE Internation Confernce on Mobile Data Management,Porto,Portugal,June 13-16,2016.

[13] 田家堂,王轶彤,冯小军. 一种新型的社会网络影响最大化算法[J]. 计算机学报,2011,34(10):1956-1965.

[14] Yang J, Leskovec J. Patterns of temporal variation in online media[C]//Proceedings of the fourth ACM international conference on Web search and data mining,Hong kong,China,February 09-11,2011.

[15] 刘德海, 苏烨, 王维国. 振荡型群体性突发事件中信息特征的演化博弈分析[J].中国管理科学,2012,20(S1):172-178.

[16] Boyd D, Golder S, Lotan G. Tweet, tweet, retweet:Conversational aspects of retweeting on twitter[C]//the 43rd Hawaii International Conference on System Sciences (HICSS),Honolulu,HI,USA,January5-8,2010.

[17] 廖卫民, 柯伟. 网络舆论波研究——基于波浪力学及杭州两起舆论事件的理论思考[J]. 新闻记者, 2010,(4):12-16.

[18] 刘樑, 戴伟, 李仕明. 基于多Agent的非常规突发事件在线信息预警策略研究[J]. 中国管理科学, 2014,22(S1):180-187.

[19] 王秀利, 朱建明. 社会舆论方向影响下的微博商业言论传播模型[J]. 中国管理科学, 2012,20(S2):691-695.

[20] 曹学艳, 张仙, 刘樑,等. 基于应对等级的突发事件网络舆情热度分析[J]. 中国管理科学, 2014, 22(3):82-89.

[21] Matsubara Y, Sakurai Y, Prakash B A, et al. Rise and fall patterns of information diffusion:model and implications[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. Beijing,August 12-16,2012.
Outlines

/