主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Virus Based on Cooperative Genetic Algorithm Automated Warehouse Space Optimization Model

Expand
  • Xi'an University of Posts & Telecommunications, School of Econonnics and Management, Xi'an 710061, China

Received date: 2016-01-11

  Revised date: 2016-05-26

  Online published: 2017-08-26

Abstract

Automated warehouse is an intricate system of storage, and slotting optimization problems directly affect the efficiency of the Automated Warehouse. To solve the dilemma of location selection of automatic stereo warehouse, a Slotting Optimization model which take the out of storage efficiency and shelf stability of storage as its optimization factors is proposed, the Multi-objective mathematical model of Slotting Optimization is established. According to the actual conditions of Automated Warehouse, with the help of Strategy Set Transformation, Delphi method and the Analytic Hierarchy Process(AHP) are used to determine the weight. And virus combined with genetic algorithm is taken to simulate the optimization model. In the MATLAB software environment, the Multi-objective genetic algorithm for virus is utilized to calculate the model solution. Finally, the results comparison among the simulation of the data before Slotting Optimization, the data after virus combined with genetic algorithm and the data after traditional genetic algorithm indicates that Virus Cooperative Genetic Algorithm(VEGA) can effectively optimize the automation stereoscopic warehouse slotting. It is also a kind of effective way to improve the efficiency of goods out of storage and stability of shelf.

Cite this article

LI Peng-fei, MA Hang . Virus Based on Cooperative Genetic Algorithm Automated Warehouse Space Optimization Model[J]. Chinese Journal of Management Science, 2017 , 25(5) : 70 -77 . DOI: 10.16381/j.cnki.issn1003-207x.2017.05.009

References

[1] Lam C H Y, Choy K L, Chung S H.Framework to measure the performance of warehouse operations efficiency[C]. Proceedings of the 8th International Conference on Industrial Informatics,Oskar,Japan,July 13-16,2010.
[2] Kubota N, Arakawa T, Fukuda T,et al. Fuzzy manufacturing scheduling by virus-evolutionary genet-ic algorithm in selforganizing manufacturing system[C]//Proceedings of the 6th international conference on Fuzzy systems. Barcelona:IEEE,July 5,1997:1283-1288.
[3] de Koster R,Le-Duc T,Roodbergen K J.Design and control of warehouse order picking:A literature review[J].European Journal of Operational Research,2007,18(12):48-50.
[4] Ma Yongjie, Yun Wenxia, Hou Wenjing. The research progress of genetic algorthm in the large warehouse system[C]//Proceedings of the 2010 Conferences on Optoelectronics and Image Processing,Barcelona:IEEE,November 11-12,2010:616-620.
[5] Kim K H,Park K T.Dynamic space allocation for temporary storage[J].International Journal of Systems Science,2003,34(1):11-20.
[6] Zu Qiaohong, Cao Mengmeng. Slotting optimization of warehouse based on hybrid genetic algorithm[C]//Proceedings of the 6th International Conference on Pervasive Computing and Applications,Bacelona:IEEE,October 26-28,2011:19-21.
[7] 薛桂香.基于智能优化算法的网格任务调度策略研究[D].天津:天津大学,2008.
[8] 邓爱民,蔡佳,毛浪. 基于时间的自动化立体仓库货位优化模型研究[J]. 中国管理科学,2013,21(6):107-112.
[9] 鄂晓征,祖巧红,曹萌萌.基于遗传算法的汽车零件自动化仓储货位优化[J].系统仿真学报,2013,25(3):430-435+444.
[10] 王进业,宋宇博.旁通式自动化立体仓库拣选作业和出口选择的组合优化[J].河北科技大学学报,2015, 36(1):36-40.
[11] 张雄飞,柳少军.一种改进遗传算法及在多目标优化中的应用[J]. 系统管理学报,2007,16(3):315-319.
[12] 张群,颜瑞.基于改进模糊遗传算法的混合车辆路径问题[J]. 中国管理科学,2012,20(2):121-128.
[13] 常发亮,刘增晓,辛征,等.自动化立体仓库拣选作业路径优化问题研究[J]. 系统工程理论与实践, 2007,27(2):139-143.
[14] 曹浪财,罗键. 可视化自动仓储系统设计与货位优化[J]. 厦门大学学报(自然科学版),2012,51(1):46-50.
[15] 孙艳丰. 基于GATS混合策略的多目标优化算法[J]. 管理工程学报,2000,14(4):4-7.
[16] 胡仕成,徐晓飞,李向阳. 项目优化调度的病毒协同进化遗传算法[J]. 软件学报,2004,15(1):49-57.
[17] 戢守峰,李峰,董云龙,等. 基于遗传算法的三级逆向物流网络设计模型研究[J].中国管理科学,2007, 15(6):86-91.
Outlines

/