主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

The Role of Cojumps and Macro Announcements in Forecasting the Realized Volatility of Chinese CSI 300 Index

Expand
  • School of Management and Engineering, Nanjing University, Nanjing 210093, China

Received date: 2015-07-29

  Revised date: 2016-06-13

  Online published: 2017-03-07

Abstract

The realized volatility calculated from intraday high-frequency data well measures the risk of financial assets. Therefore studying its forecasting models is of important value. The heterogeneous autoregressive (HAR-RV-CJ) model of realized volatility which uses lagged continuous-time volatilities and jumps as regressors well characterizes volatility's long memory property with competitive forecasting performance, and thus it has been widely adopted. Considering that the cojumps of component stocks can contain information that is not reflected in index jumps, expanding the HAR-RV-CJ model of index volatility with such cojump information is proposed. Specifically, cojumps are identified using the non-parametric mean cross-product statistic, cojump intensity is estimated using the autoregressive conditional hazard model, and then cojump intensity is included in the HAR-RV-CJ model of index realized volatility to analyze the corresponding forecasting performance improvements. Furthermore, considering that macro announcements can affect the whole stock market and thus the cojump probability, macro exogenous variables such as the consumer price index, the gross domestic product and the balance of trade announcements, etc., are included to augment the basic autoregressive conditional hazard model. Its value to cojump intensity estimation and index volatility forecasting is also considered. Using the high-frequency prices of Chinese CSI 300 index and its component stocks from January 1, 2011 to July 11, 2013 as empirical data, it is shown that component cojumps and index jumps do have different characteristics. Besides the fit performance of these HAR models, their out-of-sample forecasting performance is compared using the superior predictive ability test under four common loss functions. The HAR-RV-CI model which includes cojump intensity instead of past jumps as its regressors, has obviously better fit and forecasting performance than the original HAR-RV-CJ model, the HAR-RV-CJI model which includes both cojump intensity and past jumps, and the benchmark GARCH-jump model. Including macro announcements can improve the fit of the autoregressive conditional hazard model and the index volatility model. However, it does not help the out-of-sample forecasting of index volatility, partly due to the low frequency of the macro announcement variables. Above all, our research confirms the value of including component cojump information in the HAR-RV-CJ model of CSI 300 index volatility, and suggests the appropriate model form for superior forecasting performance. Direct extension would be including the cojump information in the vector HAR models to pursue forecasting performance improvements, which has great value for index futures hedging and portfolio allocation applications.

Cite this article

QU Hui, CHENG Si-yi . The Role of Cojumps and Macro Announcements in Forecasting the Realized Volatility of Chinese CSI 300 Index[J]. Chinese Journal of Management Science, 2016 , 24(12) : 10 -19 . DOI: 10.16381/j.cnki.issn1003-207x.2016.12.002

References

[1] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007.

[2] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.

[3] Taylor S J.Modeling stochastic volatility: A review and comparative study[J]. Mathematical Finance, 1994, 4(2): 183-204.

[4] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 34(9): 885-905.

[5] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1): 1-37.

[6] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of Financial Econometrics, 2006, 4(1):1-30.

[7] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2): 174-196.

[8] Andersen T G, Bollerslev T, Diebold F X. Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility[J]. Review of Economics and Statistics, 2007, 89(4): 701-720.

[9] 王春峰, 姚宁, 房振明, 李晔. 中国股市已实现波动率的跳跃行为研究[J]. 系统工程, 2008, 26(2): 1-6.

[10] 瞿慧, 李洁, 程昕. HAR族模型与GARCH族模型对不同期限波动率的预测精度比较——基于沪深300指数高频价格的实证分析[J]. 系统工程, 2015, 33(3): 32-37.

[11] 杨科, 田凤平, 林洪. 跳跃的估计、股市波动率的预测以及预测精度评价[J]. 中国管理科学, 2013, 21(3): 50-60.

[12] 陈浪南, 杨科. 中国股市高频波动率的特征、预测模型以及预测精度比较[J]. 系统工程理论与实践, 2013, 33(2): 296-307.

[13] 孙洁. 考虑跳跃和隔夜波动的中国股票市场波动率建模与预测[J]. 中国管理科学, 2014, 22(6): 114-124.

[14] 马锋, 魏宇, 黄登仕, 张鹏云. 基于跳跃和符号跳跃变差的HAR-RV预测模型及其MCS检验[J]. 系统管理学报, 2015, 24(5): 700-710.

[15] 吴恒煜, 夏泽安, 聂富强. 引入跳跃和结构转换的中国股市已实现波动率预测研究:基于拓展的HAR-RV模型[J]. 数理统计与管理, 2015, 34(6): 1111-1128.

[16] 马锋, 魏宇, 黄登仕, 夏泽安. 基于马尔科夫状态转换和跳跃的高频波动率模型预测[J]. 系统工程, 2016, 34(1): 10-16.

[17] Bollerslev T, Law T H, Tauchen G. Risk, jumps, and diversification[J]. Journal of Econometrics, 2008, 144(1): 234-256.

[18] LahayeJ, Laurent S, Neely C J. Jumps, cojumps and macro announcements[J]. Journal of Applied Econometrics, 2011, 26(6), 893-921.

[19] Gilder D, Shackleton M B, Taylor S J. Cojumps in stock prices: Empirical evidence[J]. Journal of Banking & Finance, 2014, 40(1): 443-459.

[20] 欧丽莎, 袁琛, 李汉东. 中国股票价格跳跃实证研究[J]. 管理科学学报, 2011, 14(9): 60-66.

[21] Hamilton J, Oscar J. A model of the federal funds rate target[J]. Journal of Political Economy, 2002, 110(5): 1135-1167.

[22] Dungey M, Hvozdyk L. Cojumping: Evidence from the US treasury bond and futures markets[J]. Journal of Banking & Finance, 2012, 36(5): 1563-1575.

[23] 赵华, 秦可佶. 股价跳跃与宏观信息发布[J]. 统计研究, 2014, 31(4): 79-89.

[24] Hansen PR. A test for superior predictive ability[J]. Journal of Business & Economic Statistics, 2005, 23(4): 365-380.

[25] 刘向丽, 程刚, 成思危, 等. 中国期货市场日内效应分析[J]. 系统工程理论与实践, 2008, (8): 63-80.

[26] 赵秀娟, 魏卓, 汪寿阳. 基于日内效应的沪深300股指期货套利的分析[J]. 管理科学学报, 2015, 18(1): 73-86.

[27] 王维国, 佘宏俊. 超高频数据的日内效应调整方法研究[J]. 中国管理科学, 2015, 23(6): 49-56.

[28] 菀莹, 庄新田, 金秀. 中国股市的日内效应、长记忆性及多重分形性:基于价-量交叉相关性视角[J]. 系统管理学报, 2016, 25(1): 28-35.

[29] Boudt K, Croux C, Laurent S. Robust estimation of intraweek periodicity in volatility and jump detection[J]. Journal of Empirical Finance, 2011, 18(2), 353-367.

[30] 瞿慧. 基于交错取样门限多幂次变差的中国股市波动细分及非对称性建模[J]. 系统工程, 2014, 32(2): 32-39.

[31] Maheu JM, McCurdy TH. News arrival, jump dynamics, and volatility components for individual stock returns[J]. The Journal of Finance, 2004, 59(2):755-793.
Outlines

/