In order to solve the decision inference problem and the information redundancy problem in double-layer distributed decision in big data environment, a hypothesis that there exits correlation in inference information is made based on the analysis of the complexity of the participating subjects and the overlapping of business relations in such decision, and an inference information description mechanism with the advantage of soft expression is suggested by employing the BPA function in evidence theory. On the ground of that, theorems and inferences are constructed for upper and lower departments to eliminate the influences of both administrators and upper departments and used to make a scientific fusion of all the decision subjects' meta-inference information. Finally, the procedures of double-layer distributed decision in big data environment are constructed according to the "upper to lower" decision order. The result of numerical comparison analysis shows the present method is scientific and feasible. The present method is benefit to develop the thought for solving management decision problems in big data environment and explore the "big" mode for dealing with incompleteness data or correlation data.
DU Yuan-wei, YANG Na
. Double-layer Distributed Fusion Decision Method in Big Data Environment[J]. Chinese Journal of Management Science, 2016
, 24(5)
: 127
-138
.
DOI: 10.16381/j.cnki.issn1003-207x.2016.05.015
[1] Zarate S J. Distributed decision making:A proposal of support through cooperative systems[J]. Group Decision and Negotiation,2005, 14(2):147-158.
[2] Schneeweiss C. Distributed decision making-a unified approach[J]. European Journal of Operational Research,2003, 150(2):237-252.
[3] Wernz C, Deshmukh A. Multiscale decision-making:Bridging organizational scales in systems with distributed decision-makers[J]. European Journal of Operational Research,2010, 202(3):828-840.
[4] Tiryaki F. Interactive compensatory fuzzy programming for decentralized multi-level linear programming(DM-LLP) problems[J]. Fuzzy Sets and Systems,2006, 157(33):3072-3090.
[5] 魏守智,赵海,王刚,等. 复杂信息系统分布式决策融合模型及应用研究[J]. 计算机科学,2005, 32(4):22-23.
[6] 范波,潘泉,张洪才. 一种基于可传递置信模型的分布式决策方法[J]. 系统仿真学报,2004, 16(11):2622-2624.
[7] Ling Qing, Tian Zhi, Li Yue. Distributed decision-making in wireless sensor networks for online structural health monitoring[J]. Journal of Communications and Networks, 2009, 11(4):350-358.
[8] Wise J, Smith G, Salt J, et al. Distributed decision-making and control for agile military radio networks[M]. Berlin Heidelberg:Springer, 2006.
[9] Alemany M M E, Alarcón F, Lario F, et al. An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning[J]. Computers in Industry, 2011, 62(5):519-540.
[10] 张伟,钱坤,谢寿生. 航空发动机智能温度传感器最优分布式决策研究[J]. 传感技术学报. 2007, 20(3):528-531.
[11] Moskwitz H, Drnevich P, Ersoy O. Using real-time decision tools to improve distributed decision-making capabilities in high-magnitude crisis situations[J]. Decision Sciences, 2011, 42(2):477-493.
[12] 陈宏伟,袁国斌. 基于多智能代理的分布式决策系统实现[J]. 计算机应用研究, 2002(08):46-50.
[13] Philip Chen C L, Zhang Chunyang. Data-intensive applications, challenges, techniques and technologies:A survey on Big Data[J]. Information Sciences, 2014, 275:314-347.
[14] Fan Shaokun, Lau R Y K, Zhao J L. Demystifying big data analytics for business intelligence through the lens of marketing mix[J]. Big Data Research, 2015, 2(1):28-32.
[15] Qin Yiming, Yalamanchili H K, Qin Jing, et al. The current status and challenges in computational analysis of genomic big data[J]. Big Data Research, 2015, 2(1):12-18.
[16] Zikopoulos P, Eaton C. Understanding big data:Analytics for enterprise class hadoop and streaming data[M]. New York:McGraw-Hill Osborne Media, 2011.
[17] 何军. 大数据对企业管理决策影响分析[J]. 科技进步与对策, 2014, 31(3):65-68.
[18] 冯芷艳,郭迅华,曾大军,等. 大数据背景下商务管理研究若干前沿课题[J]. 管理科学学报, 2013, 16(1):1-9.
[19] 徐宗本,冯芷艳,郭迅华,等.大数据驱动的管理与决策前沿课题[J].管理世界, 2014,(11):158-163.
[20] Chang R M, Kauffman R J, Kwon Y. Understanding the paradigm shift to computational social science in the presence of big data[J]. Decision Support Systems, 2014, 63(0):67-80.
[21] Deng Xinyang, Hu Yong, Chan F T S, et al. Parameter estimation based on interval-valued belief structures[J]. European Journal of Operational Research, 2015, 241(2):579-582.
[22] 杨风暴,王晓霞. D-S证据理论的冲突证据合成方法[M]. 北京:国防工业出版社, 2010.
[23] Shafer G. A mathematical theory of evidence[M]. Princeton:Princeton University Press, 1976.
[24] Yang Jianbo, Xu Dongling. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205:1-29.
[25] 肖文,王正友,王耀德. 一种相关证据的合成规则[J]. 控制与决策, 2011, 26(5):773-776.
[26] 李春好,杜元伟. 基于双平台协调的两层群决策方法[J]. 管理科学学报, 2011, 14(7):8-20.
[27] Smets P. Analyzing the combination of conflicting belief functions[J]. Information Fusion, 2007, 8(4):387-412.
[28] 李春好,苏航. 基于交叉评价策略的全局协调相对效率排序模型[J]. 中国管理科学, 2013, 21(3):137-145.
[29] 杜元伟,段万春,黄庆华,等. 基于头脑风暴原则的主观证据融合决策方法[J]. 中国管理科学, 2015, 23(3):130-140.