With the establishment and development of China's emissions trading market, the reduction of carbon emissions intensity has become a medium and long term mandatory target in companies' production operations management. A dynamic lot sizing model is proposed to investigate the optimal production, emissions trading and abatement investment decisions of a manufacturer under cap-and-trade. At the beginning of the planning horizon, the manufacturer determines the optimal abatement investment decisions, including the timing of investment in an abatement technology and the optimal abatement capacity. In each period, the manufacturer decides the optimal emission abatement size according to the production planning. It is assumed that the abatement technology can reduce both carbon emissions and energy consumption in the production process. Based on the generalized Benders decomposition approach, the dynamic model is analyzed and some properties of the optimal solution are derived. Numerical experiments are conducted to examine the effects of emission cap and emission allowance price on the manufacturer's total cost, total emissions level, and the optimal abatement investment decisions. It is found that: (1) when the supply of emission allowances in the market is abundant, reducing the carbon cap or changing the initial allocation rule of free emission allowances will not reduce the manufacturer's carbon emissions level; (2) carbon emission allowance price is the key factor to control the manufacturer's carbon emissions level and abatement capacity; (3) with the increase of carbon price, the manufacturer will expand the abatement capacity even if it has already held enough allowances to cover all its emissions. Our research provides useful managerial insights for manufacturing firms to make investment in carbon emissions abatement under the cap-and-trade system.
HUANG Di, CHEN Jian, ZHOU Hong
. Optimal Production and Emissions Reduction Investment Policies in a Dynamic Lot Sizing Model Under Cap-and-trade[J]. Chinese Journal of Management Science, 2016
, 24(4)
: 129
-137
.
DOI: 10.16381/j.cnki.issn1003-207x.2016.04.015
[1] Hua Guowei, Cheng T C E, Wang Shouyang. Managing carbon footprints in inventory management[J]. International Journal of Production Economics, 2011, 132(2): 178-185.
[2] Benjaafar S, Li Yanzhi, Daskin M S. Carbon footprint and the management of supply chains: Insights from simple models[J]. IEEE transactions on automation science and engineering, 2013, 10(1): 99-116.
[3] Absi N, Dauzère-Pérès S, Kedad-Sidhoum S, et al. Lot sizing with carbon emission constraints[J]. European Journal of Operational Research, 2013, 227(1): 55-61.
[4] 胡海菊, 李勇建. 考虑再制造和产品需求可替代的短生命周期产品动态批量生产计划问题[J]. 系统工程理论与实践, 2007, (12): 76-84.
[5] 戴道明.碳排放约束下动态定价与批量的联合决策[J]. 合肥工业大学学报(自然科学版), 2013, 36(8): 996-1001.
[6] 王明喜, 王明荣, 汪寿阳, 等. 最优减排策略及其实施的理论分析[J]. 管理评论, 2010, 22(6): 42-47.
[7] 赵道致, 张学强. 面向碳减排投资优化的低碳供应链网络设计及优化研究[J]. 物流技术, 2013, 32(3): 215-218.
[8] 谢鑫鹏, 赵道致. 基于CDM的两级低碳供应链企业产品定价与减排决策机制研究[J]. 软科学, 2013, 27(5): 80-85.
[9] 谢鑫鹏, 赵道致. 低碳供应链企业减排合作策略研究[J]. 管理科学, 2013, 26(3): 108-119.
[10] 杜少甫, 董骏峰, 梁樑, 等. 考虑排放许可与交易的生产优化[J]. 中国管理科学, 2009, 17(3): 81-86.
[11] 何大义, 马洪云. 碳排放约束下企业生产与存储策略研究[J]. 资源与产业, 2011, 13(2): 63-68.
[12] 侯玉梅, 潘登, 梁聪智. 碳排放交易下双寡头企业生产与减排研究[J]. 商业研究,2013, 55(1): 176-182.
[13] 陈伯成,李英杰."考虑排放许可交易的生产优化"的补充研究[J]. 中国管理科学, 2014, 22(9):141-148.
[14] Islegen O, Reichelstein S J. Carbon capture by fossil fuel power plants: An economic analysis[J]. Management Science, 2011, 57(1): 21-39.
[15] Jiang Yan, Klabjan D. Optimal emissions reduction investment under green house gas emissions regulations. Working paper, Northwestern University, 2012.
[16] 骆瑞玲,范体军,夏海洋. 碳排放交易政策下供应链碳减排技术投资的博弈分析[J]. 中国管理科学, 2014, 22(11): 44-53.
[17] 王明喜,鲍勤,汤铃,等. 碳排放约束下的企业最优减排投资行为[J]. 管理科学学报, 2015, 18(6): 41-57.
[18] 陈伯成,李英杰,闫学为. 补贴及惩罚模式下的碳排放许可交易生产优化[J]. 中国管理科学, 2014, 22(SI): 774-781.
[19] 周艳菊,黄雨晴,陈晓红,等. 促进低碳产品需求的供应链减排成本分担模型[J]. 中国管理科学, 2015, 23(7): 85-93.
[20] Vogt-Schilb A, Meunier G, Hallegatte S. Should marginal abatement costs differ across sectors: The effect of low-carbon capital accumulation. Working Paper, World Bank, 2013.
[21] 鲁奎, 杨昌辉, 戴道明. 能力受限批量问题的启发式算法与CPLEX仿真优化[J]. 系统仿真学报, 2008, 20(3): 6365-6371.
[22] 鲁奎, 杨昌辉, 戴道明. 运输能力受限与费用时变批量问题的拉格朗日松弛启发式算法[J]. 系统工程理论与实践, 2008,(10): 47-52.
[23] Geoffrion A M. Generalized benders decomposition[J]. Journal of Optimization Theory and Application. 1972, 10(4):237-260.
[24] Wagner H M, Whitin T M. Dynamic version of the economic lot size model[J]. Management Science, 1958, 5(1): 89-96.
[25] Brahimi N, Dauzère-Pérès S, Najid N M, et al. Single item lot sizing problems[J]. European Journal of Operational Research, 2006, 168(1): 1-16.
[26] Aggarwal A, Park J K. Improved algorithms for economic lot size problem[J]. Operations Research, 1993, 41(3):549-571.
[27] Gade D, Kücükyavuz S. Formulations for dynamic lot sizing with service levels[J]. Naval Research Logistics, 2013, 60(2):87-101.