主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Grey Matrix Similar Incidence Model for Panel Data and Its Application

Expand
  • 1. Business School, Anhui University of Technology, Maanshan 243032, China;
    2. Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2014-07-11

  Revised date: 2014-12-15

  Online published: 2015-12-01

Abstract

Grey incidence analysis is an important part of grey system theory which is used to ascertain the relationship grade between an inflential factor and the major behaviour factor. However, most of grey incidence models are mainly applied to the field in which the operational behaviour factor and relational factor are the cross-sectional data or time series data in a given system. Therefore, the grey model on pannel data is worth exploring that is the asscociated content in this paper.According to the basic idea of grey incidence of grey system theory, the degree of relative closeness of the development rate and growth rate indexes between the relative factor matrices and characteristic behavior matrix of the system is measured from two dimensions of individual and time on the basis of the definition of the matrix sequence of a discrete data sequence. With the measurement of grey incidence degree, the grey matrix similar incidence model of panel data is put forward from the traditional vector space to the matrix space and its properties are discussed. Finally, CO2 emission is taken as an example where the data of carbon dioxide has been calculated for six provinces by the IPCC method in 2006 and the other data are from the Statistical Yearbook. And a grey matrix similar incidence model is established by measuring the CO2 emission in 2005-2012 of six provinces in the central region in China. The real example shows its simplification and practicability. The empirical results show that people may take some main factors into account to abate carbon dioxide emission which are an effective way to implement energy saving and carbon emission reduction. For example, the central region can appropriately control the population scale but also put intensive economic development way that guide residents to live low carbon and improve the consciousness of energy conservation and carbon emission reduction.

Cite this article

CUI Li-zhi, LIU Si-feng . Grey Matrix Similar Incidence Model for Panel Data and Its Application[J]. Chinese Journal of Management Science, 2015 , 23(11) : 171 -176 . DOI: 10.16381/j.cnki.issn1003-207x.2015.11.021

References

[1] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社, 2002.

[2] Liu Sifeng, lin Yi. Grey information:Theroy and practical application[M].London:Springer-Verlag, 2006.

[3] 刘勇,刘思峰, Forrest J.一种新的灰色绝对关联度模型及其应用[J].中国管理科学, 2012, 20(5):173-177.

[4] 王清印.灰色B型关联分析[J].华中理工大学学报,1989,17(6):77-82.

[5] 王清印,赵秀恒. C型关联分析[J].华中理工大学学报,1999,27(3):75-77.

[6] 唐五湘. T型关联度及其计算方法[J].数理统计与管理,1995,14(1):34-37.

[7] 张岐山,郭喜江.灰关联熵分析方法[J].系统工程理论与实践,1996,8(8):7-11.

[8] 赵艳林,韦树英,梅占馨.灰色欧几里德关联度[J].广西大学学报(自然科学版),1998,23(1):10-13.

[9] 党耀国,刘思峰.灰色斜率关联度的改进[J].中国工程科学,2004,6(3):23-26.

[10] 肖新平.关于灰色关联度量化模型的理论研究和评论[J].系统工程理论与实践,1997,17(8):76-81.

[11] 吕峰,刘翔,刘泉.七种灰色系统关联度的比较研究[J].武汉工业大学学报,2000,22(2):41-43.

[12] 谢乃明,刘思峰.几类关联度的平行性和一致性[J].系统工程,2007,25(8):98-103.

[13] 崔杰,党耀国,刘思峰.几类关联度的平行性和一致性[J].系统工程,2009,27(4):65-70.

[14] 胡彦蓉,刘洪久,吴冲.大学生运动服装品牌忠诚度影响因素的灰色关联度分析[J].中国管理科学, 2013,(专辑):31-37.

[15] Lu I J,.Lin S J, Lewis C. Grey relation analysis of motor vehicular energy consumption in Taiwan[J]. Energy Policy, 2008,(36):2556-2561.

[16] 刘思峰,蔡华,杨英杰,等.灰色关联分析模型研究进展[J].系统工程理论与实践,2013,33(8):2041-2046.

[17] Wang Jiangjiang, Jing Youyin, Zhang Chunfa, et al. Integrated evaluation of distributed triple-generation systems using improved grey incidence approach[J]. Energy, 2008, 33(9):1427-1437.

[18] Jiang Hui, He Wenwu. Grey relational grade in local support vector regression for financial time series prediction[J]. Expert System with Application, 2012,39(3):2256-2262.

[19] 张可,刘思峰.灰色关联聚类在面板数据中的扩展及应用[J].系统工程理论与实践,2010,30(7):1253-1259.

[20] 钱吴永,王育红,党耀国等.基于多指标面板数据的灰色矩阵关联模型及其应用[J].系统工程,2013,31(10):70-74.

[21] 吴利丰,刘思峰.基于灰色凸关联度的面板数据聚类方法及应用[J].控制与决策,2013,28(7):1033-1045.

[22] 张贤达.矩阵分析与应用[M]. 2版.北京:清华大学出版社,2013.

[23] 张毅,夏炎.工业化过程中碳排放消费建设比的演变规律研究[J].中国管理科学, 2012,20(2):159-166.

[24] 吴振信,谢晓晶,王书平.经济增长、产业结构对碳排放的影响分析——基于中国省际面板数据[J].中国管理科学, 2012, 2(3):161-166.

[25] 赵泉午,杨茜.考虑CO2排放量的城市专业物流中心选址研究[J].中国管理科学,2014,22(7):124-130.

[26] Wang Yiming, Zhang Pei, Huang Dake, et al. Convergence behavior of carbon dioxide emissons in China[J]. Economic Modelling, 2014, 43:75-80.
Outlines

/