Intra-day periodicity has been widely found in financial high frequency data study,It is a dynamic effect characterized by intra-day periodic motion and it affects the accuracy of econometric model estimation which contains intra-day financial variables. The importance of intra-day periodic adjustment is discussed firstly in this study and then introduces self-organizing maps as a intra-day periodic adjustment solution are introduced based on financial ultra high frequency duration data. The SOM method is a feature extraction on the basis of neural network learning which can recognize the dynamic feature in high-dimensional data in order to overcome the disadvantage of static periodic adjustment. Finally a monte carlo simulation through autoregressive conditional duration model is built to compare the effects of three intra-day periodic adjustment methods. The result shows that the SOM method performs more effective and stable.Therefore SOM method can be particularly suited for analysis of periodic structure in big data.
WANG Wei-guo, SHE Hong-jun
. The Research of Intra-dayPeriodic Adjustment Based on Ultra High Frequency Data[J]. Chinese Journal of Management Science, 2015
, 23(6)
: 49
-56
.
DOI: 10.16381/j.cnki.issn1003-207x.201.06.007
[1] Engle R F, Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data[J]. Econometrica,1998,66(5): 1127-1162.
[2] Pacurar M. Autoregressive conditional duration models in finance: A survey of the theoretical and empirical literature[J]. Journal of Economic Surveys,2008,22(4): 711-751.
[3] Wood R A, Mcinish T H, Ord J K. An investigation of transactions data for NYSE stocks[J]. Journal of Finance,1985,40(3): 723-739.
[4] Daigler R T. Intraday futures volatility and theories of market behavior[J]. Journal of Futures Markets,1997,17(1): 45-74.
[5] Degennaro R P, Shrieves R E. Public information releases, private information arrival and volatility in the foreign exchange market[J]. Journal of Empirical Finance,1997,4(4): 295-315.
[6] Andersen T G, Bollerslev T. Intraday periodicity and volatility persistence in financial markets[J]. Journal of Empirical Finance,1997,4(2): 115-158.
[7] Cai Jun, Cheung Y-L.‘Once-in-a-generation' yen volatility in 1998: Fundamentals, intervention, and order flow[J]. Journal of International Money and Finance,2001,20(3): 327-347.
[8] Bollerslev T, Ghysels E.Periodic autoregressive conditional heterosced -asticity[J]. Journal of Business & Economic Statistics,1996,14(2): 139-151.
[9] Cho J H, Daigler R T. A filtering process to remove the stochastic component from intraday seasonal volatility[J]. Journal of Futures Markets, 2014,34(5): 479-495.
[10] Engle R F, Sokalska M E. Forecasting intraday volatility in the us equity market:Multiplicative component garch[J]. Journal of Financial Econometrics,2012,10(1): 54-83.
[11] Melvin M, Yin Xixi. Public information arrival, exchange rate volatility, and quote frequency[J]. The Economic Journal,2000,110(465): 644-661.
[12] Bauwens L, Giot P. The logarithmic ACD model: An application to the bid-ask quote process of three NYSE stocks[J]. Annales d'Economie et de Statistique,2000,(60): 117-149.
[13] Veredas D, Rodríguez Poo J M, Espasa A. On the (intradaily) seasonality and dynamics of a financial point process: A semiparametric approach[J].Working Paper,Universidad Carlos III de Madrid,2001.
[14] Boudt K, Croux C, Laurent S. Robust estimation of intraweek periodicity in volatility and jump detection[J].Journal of Empirical Finance,2011,18(2): 353-367.
[15] Wu Zhengxiao. On the intraday periodicity duration adjustment of high-frequency data[J]. Journal of Empirical Finance,2012,19(2): 282-291.
[16] 张晓峒, 徐鹏. 季节调整方法在中国的发展与应用[J].统计研究,2013,30(09): 10-16.
[17] 陈飞, 高铁梅. 结构时间序列模型在季节调整方面的应用——与X-12季节调整方法的比较分析[J]. 系统工程理论与实践,2007,(11): 7-14.
[18] 徐正国, 张世英. 上海股市微观结构的超高频数据分析[J]. 天津大学学报(社会科学版),2005,7(03): 86-89.
[19] 徐正国, 张世英. 高频金融数据"日历效应"的小波神经网络模型分析[J]. 数学的实践与认识,2007,37(15): 1-6.
[20] Kohonen T. Self-organizing maps[M]. Mew York:Springer,2001.