主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

A VaR Moldel Based on Multifractal Asymmetry Measurement

Expand
  • 1. Institute of Chinese Financial Studies, Southwest University of Finance and Economics, Chengdu 610074, China;
    2. Collaborative Innovation Center of Financial Security, Chengdu 610074, China;
    3. School of Finance, Southwest University of Finance and Economics, Chengdu 611130, China

Received date: 2013-01-26

  Revised date: 2013-08-07

  Online published: 2015-03-18

Abstract

For describing asymmetry of financial returns, the validity of traditional measurement, i.e., skewness coefficient, is heavily dependent on the assumption that the data is independently and normally distributed. However, actual data in financial markets often has non-independent and non-normal distribution. So a new measurement should be explored to fit stylized facts of actual financial data. After a preliminary exploration for a long time, fractal analysis are found to provide highly targeted solutions for many problems in traditional research about asymmetry of financial returns. By refining useful statistical information to describe the asymmetric features of financial assets' yields during the process of multifractal analysis, a new asymmetry measurement (Δf) is constructed in this paper,whose theoretical properties is more excellent and are more suitable for typical statistical characteristics of actual financial data. Unconditional coverage test and conditional coverage test are used to compare the VaR computation accuracy differences for CSI 300 index between risk models augmented by the skewness coefficients and the Δf measurement. Empirical results show that the latter has higher VaR estimation accuracy. The new measurement which we present in this paper provides a more suitable tool for asymmetry testing to financial returns. Furthermore, this is a typical result of making use of statistical information embedded in the process of fractal analysis.

Cite this article

WANG Peng, YUAN Xiao-li . A VaR Moldel Based on Multifractal Asymmetry Measurement[J]. Chinese Journal of Management Science, 2015 , 23(3) : 13 -23 . DOI: 10.16381/j.cnki.issn1003-207x.2015.03.002

References

[1] Christofferson P F. Elements of financial risk management[M]. San Diego: Academic Press, 2003.

[2] Korkie B, Sivakumar R, Turtle H J. Variance spillover and skewness in financial asset returns[J]. The Financial Review, 2006, 41(1): 139-156.

[3] Kendall M, Stuart A. The advanced theory of statistics[M]. London: McGraw-Hill Press, 1969.

[4] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007.

[5] Mandelbrot B B. Fractals and scaling in finance[M]. New York: Springer Press, 1997.

[6] Mandelbrot B B. A multifractal walk down Wall Street[J]. Scientific American, 1999, 298(1): 70-73.

[7] 王鹏, 王建琼. 中国股票市场的多分形波动率测度及其有效性研究[J]. 中国管理科学, 2008, 16(6): 9-15.

[8] Jiang Zhiqiang, Zhou Weixing. Multifractal analysis of Chinese stock volatilities based on the partition function approach[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(19): 4881-4888.

[9] Calvet L, Fisher A. Multifractal volatility: Theory, forecasting, and pricing[M]. London: Academic Press, 2008.

[10] Ramirez J, Alvarez J, Solis R. Crude oil market efficiency and modeling: Insights from the multi-scaling autocorrelation pattern[J]. Energy Economics, 2010, 32(5): 993-1000.

[11] Schmitt F G, Ma Li, Angounou T. Multifractal analysis of the dollar-yuan and euro-yuan exchange rate before and after the reform of the peg[J]. Quantitative Finance, 2011, 11(4): 505-513.

[12] Faruk S, Ramazan G.Intraday dynamics of stock market returns and volatility [J]. Physica A, 2006, 367: 375-387.

[13] Lau H S, Wingender J R, Lau H L. On estimating skewness in stock returns[J]. Management Science, 1989, 35(9): 1139-1142.

[14] Christofferson P F. Elements of financial risk management[M]. San Diego: Academic Press, 2003.

[15] Korkie B, Sivakumar R, Turtle H J. Variance spillover and skewness in financial asset returns[J]. The Financial Review, 2006, 41(1): 139-156.

[16] Kendall M, Stuart A. The advanced theory of statistics[M]. London: McGraw-Hill Press, 1969.

[17] 陈雄兵, 张宗成. 基于修正GARCH模型的中国股市收益率与波动周内效应实证研究[J]. 中国管理科学, 2008, 16(4): 44-49.

[18] Mcmillan D G, Speight A E. Volatility dynamics and heterogeneous markets[J]. International Journal of Finance and Economics, 2006, 11(1): 115-121.

[19] Poshakwale S, Aquino K. The dynamics of volatility transmission and informationflow between ADRs and their underlying stocks[J]. Global Finance Journal, 2008, 19(1): 187-201.

[20] Linden M. A model for return distribution[J]. International Journal of Finance & Economics, 2001, 6(2): 159-170.

[21] 王鹏, 王建琼. 中国股票市场的收益分布及其SPA检验[J]. 系统管理学报, 2008, 17(5): 542-547.

[22] 黄德龙, 杨晓光. 中国股票市场股指收益分布的实证分析[J]. 管理科学学报, 2008, 11(1): 68-77.

[23] Peters E E. Fractal market analysis: Applying chaos theory to investment and economics[M]. New York: Jone Wiley & Sons Press, 1994.

[24] Tolikas K, Gettinby G. Modelling the distribution of the extreme share returns in Singapore[J]. Journal of Empirical Finance, 2009, 16(2): 254-263.

[25] Matto T D. Multi-scaling in finance[J]. Quantitative Finance, 2007, 7(1): 21-36.

[26] Calvet L, Fisher A. Multifractal volatility: Theory, forecasting, and pricing[M]. London: Academic Press, 2008.

[27] Bai Manying, Zhu Haibo. Power law and multi-scaling properties of the Chinese stock market[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(9): 1883-1890.

[28] 汪富泉, 李后强. 分形几何与动力系统[M]. 哈尔滨: 黑龙江教育出版社, 1993.

[29] Sydney C L, Serena N. The empirical risk-return relation: A factor analysis approach[J]. Journal of Financial Economics, 2007, 83(1): 171-222.

[30] Kupiec P.Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 173-184

[31] Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business and Economic Statistics, 2004, 22(3): 367-381.

[32] Engle R F, Patton A. What good is volatility model?[J]. Quantitative Finance, 2001, 1(2): 237-245.

[33] Mcneil A J, Frey R. Estimation of tail related risk measures forheteroscedastic financial time series: An extreme value approach[J]. Journal of Empirical Finance, 2000, 7(3): 271-300.

[34] Talpsepp T, Rieger M O. Explaining asymmetric volatility around the world[J]. Journal of Empirical Finance, 2010, 17(8): 938-956.
Outlines

/