[1] |
杨子晖, 陈雨恬, 黄卓. 国际冲击下系统性风险的影响因素与传染渠道研究[J]. 经济研究, 2023, 58(1): 90-106.
|
|
Yang Z H, Chen Y T, Huang Z. Research on influencing factors and transmission channels of systemic risks under international shocks[J]. Economic Research Journal, 2023, 58(1): 90-106.
|
[2] |
宫晓莉, 熊熊. 波动溢出网络视角的金融风险传染研究[J]. 金融研究, 2020(5): 39-58.
|
|
Gong X L, Xiong X. A study of financial risk contagion from the volatility spillover network perspective[J]. Journal of Financial Research, 2020(5): 39-58.
|
[3] |
Foley S, Karlsen J R, Putniņš T J. Sex, drugs, and Bitcoin: How much illegal activity is financed through cryptocurrencies?[J]. The Review of Financial Studies, 2019, 32(5): 1798-1853.
|
[4] |
明雷, 吴一凡, 熊熊, 等. 比特币价格泡沫检验、演化机制与风险防范[J]. 经济评论, 2022(1): 96-113.
|
|
Ming L, Wu Y F, Xiong X, et al. Tests of Bitcoin price bubbles, evolution mechanism and risk prevention[J]. Economic Review, 2022(1): 96-113.
|
[5] |
Weller B M. Measuring tail risks at high frequency[J]. The Review of Financial Studies, 2019, 32(9): 3571-3616.
|
[6] |
周卫华, 李一诺, 谭静. 加密货币与股票市场风险相关性研究[J]. 中国软科学, 2021(S1): 116-126.
|
|
Zhou W H, Li Y N, Tan J. Research on the correlation between cryptocurrency and stock market risk[J]. China Soft Science, 2021(S1): 116-126.
|
[7] |
Matkovskyy R, Jalan A. From financial markets to Bitcoin markets: A fresh look at the contagion effect[J]. Finance Research Letters, 2019, 31: 93-97.
|
[8] |
Ha L T, Nham N T H. An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis[J]. Technological Forecasting and Social Change, 2022, 183: 121909.
|
[9] |
Cao G, Ling M. Asymmetry and conduction direction of the interdependent structure between cryptocurrency and US dollar, renminbi, and gold markets[J]. Chaos, Solitons & Fractals, 2022, 155: 111671.
|
[10] |
Wang H, Wang X, Yin S, et al. The asymmetric contagion effect between stock market and cryptocurrency market[J]. Finance Research Letters, 2022, 46: 102345.
|
[11] |
黄云洲, 黄炯豪, 夏晓华. 比特币价格风险、宏观经济波动与股市风险传染——基于分位数关联网络的分析[J]. 中国管理科学, 2024, 32(4): 26-37.
|
|
Huang Y Z, Huang J H, Xia X H. Bitcoin price risk, macroeconomic environment and risk contagion in China’s stock market: An analysis based on quantile coherency network[J]. Chinese Journal of Management Science, 2024, 32(4): 26-37.
|
[12] |
梁琪, 常姝雅. 全球股票市场系统性风险的预警与防范——基于高低波动风险溢出网络的分析[J]. 国际金融研究, 2022(9): 67-76.
|
|
Liang Q, Chang S Y. Early warning and prevention of systemic risk in global stock market—Base on the analysis of low and high volatility risk spillover network[J]. Studies of International Finance, 2022(9): 67-76.
|
[13] |
杨子晖, 周颖刚. 全球系统性金融风险溢出与外部冲击[J]. 中国社会科学, 2018(12): 69-90+200-201.
|
|
Yang Z H, Zhou Y G. Global systemic financial risk spillovers and their external impact[J]. Social Sciences in China, 2018(12): 69-90+200-201.
|
[14] |
方意, 和文佳, 荆中博. 中国实体经济与金融市场的风险溢出研究[J]. 世界经济, 2021, 44(8): 3-27.
|
|
Fang Y, He W J, Jing Z B. A study of risk spillovers between China’s real economy and financial markets[J]. The Journal of World Economy, 2021, 44(8): 3-27.
|
[15] |
Poledna S, Molina-Borboa J L, Martínez-Jaramillo S, et al. The multi-layer network nature of systemic risk and its implications for the costs of financial crises[J]. Journal of Financial Stability, 2015, 20: 70-81.
|
[16] |
Diebold F X, Yilmaz K. Better to give than to receive: Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1): 57-66.
|
[17] |
Diebold F X, Yılmaz K. On the network topology of variance decompositions: Measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 182(1): 119-134.
|
[18] |
Strohsal T, Proaño C R, Wolters J. Characterizing the financial cycle: Evidence from a frequency domain analysis[J]. Journal of Banking & Finance, 2019, 106: 568-591.
|
[19] |
黄书培, 安海忠, 高湘昀, 等. 供给与需求驱动型原油价格变动对股票市场的多时间尺度影响研究[J]. 中国管理科学, 2018, 26(11): 62-73.
|
|
Huang S P, An H Z, Gao X Y, et al. Multiscale impacts of oil price fluctuations driven by the demand and supply on the stock market[J]. Chinese Journal of Management Science, 2018, 26(11): 62-73.
|
[20] |
Baruník J, Křehlík T. Measuring the frequency dynamics of financial connectedness and systemic risk[J]. Journal of Financial Econometrics, 2018, 16(2): 271-296.
|
[21] |
Mo B, Meng J, Zheng L. Time and frequency dynamics of connectedness between cryptocurrencies and commodity markets[J].Resources Policy,2022,77: 102731.
|
[22] |
Bouri E, Saeed T, Vo X V, et al. Quantile connectedness in the cryptocurrency market[J]. Journal of International Financial Markets, Institutions and Money, 2021, 71: 101302.
|
[23] |
Elsayed A H, Yarovaya L. Financial stress dynamics in the MENA region: Evidence from the Arab spring[J]. Journal of International Financial Markets, Institutions and Money, 2019, 62: 20-34.
|
[24] |
Ando T, Greenwood-Nimmo M, Shin Y. Quantile connectedness: Modeling tail behavior in the topology of financial networks[J]. Management Science, 2022, 68(4): 2401-2431.
|
[25] |
李政, 石晴, 卜林. 基于分位数关联的政策连续性跨国溢出研究[J]. 金融研究, 2022(8): 94-112.
|
|
Li Z, Shi Q, Bu L. Quantile connectedness of policy continuity across the globe[J]. Journal of Financial Research, 2022(8): 94-112.
|
[26] |
Nelson D B. Conditional heteroskedasticity in asset returns: A new approach[J]. Econometrica, 1991, 59(2): 347-370.
|
[27] |
Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11: 561-566
|