Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (3): 196-208.doi: 10.16381/j.cnki.issn1003-207x.2022.0575
Previous Articles Next Articles
Received:
2022-03-23
Revised:
2022-07-20
Online:
2025-03-25
Published:
2025-04-07
Contact:
Yanfeng Li
E-mail:yanwaa@126.com
CLC Number:
Jie Zhang, Yanfeng Li. Location-routing Problem of Fresh Product Distribution in Epidemic Environment[J]. Chinese Journal of Management Science, 2025, 33(3): 196-208.
"
符号 | 说明 | 符号 | 说明 |
---|---|---|---|
车辆集合, | 居民s 的易腐品需求, | ||
无人机集合, | 单位生鲜商品的价格 | ||
车辆出发或到达的点集合, | 没有温控调节下生鲜商品单位时间内的价值损耗 | ||
温控集合, | 生鲜商品在温控为w时的新鲜度衰减系数 | ||
无人机出发或到达的点集合, | 网络中节点i的地理坐标, | ||
在同一时段内配送站点的最大取货人数 | 网络中节点i的服务时间窗, | ||
车辆k的单位距离运输成本 | 配送站点n的固定成本, | ||
无人机d的单位距离飞行成本 | 一个足够大的整数 | ||
单位时间内车辆在温控w时的温控成本 | 车辆从节点n到m的行驶距离, | ||
车辆k的最大装载量 | 无人机从节点i到j的飞行距离, | ||
无人机d的最大装载量 | 车辆的行驶速度, | ||
备选站点n的服务能力 | 无人机的飞行速度, | ||
若车辆k从节点n行驶至节点m为1, 否则为0, | |||
若无人机d从节点i飞行至节点j为1, 否则为0, | |||
车辆k到达配送站点n的时间, | |||
无人机d到达隔离居民点i的时间, | |||
车辆k上的无人机降落到达配送地点n的时间, | |||
配送站点n关于生鲜商品的配送量, | |||
若配送站点n的生鲜商品被车辆k以温控w进行配送为1, 否则为0, | |||
若车辆k路线中出动架次p为1, 否则为0, | |||
若居民s 被备选站点n服务为1, 否则为0, | |||
若第n个备选站点被选择成为一个配送站点为1, 否则为0, |
"
配送站点 | 居民分配方案 | 配送站点 | 居民分配方案 |
---|---|---|---|
EDS1 | C9,C15,C16,C28,C54,C56,C59,C72,C79 | EDS10 | C26,C29,C35,C38,C64 |
EDS2 | C20,C44,C46,C48,C55,C70,C78 | EDS11 | C2,C22,C25,C31,C45,C67,C74,C76 |
EDS3 | C3,C14,C30,C41,C47,C71,C73 | EDS12 | C34,C37,C58,C65,C68,C69 |
EDS4 | C4,C17,C18,C66 | EDS13 | C1,C12,C40,C42,C50,C57,C77 |
EDS5 | C6,C32,C36,C49,C63,C80 | DS14 | 站点未被选中 |
EDS6 | C11,C53,C60,C62 | DS15 | 站点未被选中 |
EDS7 | C5,C8,C10,C19,C21,C24,C43,C61 | DS16 | 站点未被选中 |
EDS8 | C23,C33,C39,C51 | DS17 | 站点未被选中 |
EDS9 | C7,C13,C52,C75 | DS18 | 站点未被选中 |
"
运输工具 | 具体路线信息 | |
---|---|---|
车辆1 | Depot→EDS10→EDS8→EDS12→EDS5→EDS3→EDS6→EDS9→Depot | |
车辆2 | Depot→EDS1→EDS4→EDS2→EDS13→EDS11→EDS7→Depot | |
车辆1 | 无人机1 | EDS10→C64→EDS8,EDS8→C51→EDS12,EDS12→C69→EDS6,EDS6→C53→C62→EDS9 |
无人机2 | EDS12→C65→C58→EDS5,EDS5→C63→EDS3,EDS3→C71→EDS9,EDS6→C75→EDS9 | |
无人机3 | EDS12→C68→EDS5,EDS5→C80→EDS3,EDS3→C73→EDS6,EDS6→C60→EDS9,EDS8→C52→EDS9 | |
车辆2 | 无人机4 | EDS1→C59→C72→EDS2,EDS2→C55→EDS11,EDS11→C67→EDS7,EDS2→C61→EDS7 |
无人机5 | EDS1→C56→EDS1,EDS1→C79→EDS2,EDS2→C70→C78→EDS13,EDS13→C57→C77→EDS11,EDS11→C76→EDS7 | |
无人机6 | EDS1→C54→EDS4,EDS4→C66→EDS11,EDS11→C74→EDS7 |
"
算例数据 | 居民 数量 | 配送 站点 | ENSGA-II | ||||||
---|---|---|---|---|---|---|---|---|---|
SM | MID | RT | SM | MID | RT | ||||
1 | 10 | 2 | 0.412 | 0.804 | 4.1 | 0.393 | 0.786 | 7.7 | |
2 | 10 | 3 | 0.426 | 0.815 | 4.5 | 0.404 | 0.793 | 8.5 | |
3 | 20 | 2 | 0.552 | 0.963 | 5.5 | 0.524 | 0.927 | 10.2 | |
4 | 20 | 3 | 0.579 | 0.971 | 5.6 | 0.551 | 0.945 | 21.8 | |
5 | 20 | 4 | 0.622 | 1.134 | 5.9 | 0.585 | 1.006 | 34.9 | |
6 | 30 | 5 | 0.771 | 1.349 | 6.1 | 0.722 | 1.244 | 57.2 | |
7 | 30 | 6 | 0.798 | 1.415 | 6.7 | 0.756 | 1.339 | 71.7 | |
8 | 40 | 4 | 0.908 | 1.612 | 7.8 | 0.883 | 1.431 | 132.5 | |
9 | 40 | 5 | 0.955 | 1.631 | 8.3 | 0.927 | 1.522 | 239.3 | |
10 | 40 | 6 | 0.983 | 1.669 | 9.9 | 0.955 | 1.617 | 365.2 | |
平均 | 0.771 | 1.343 | 6.4 | 0.670 | 1.161 | 94.9 |
"
算例数据 | ENSGA-II | MOPSO | NSGA-II | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | RT | F1 | F2 | RT | F1 | F2 | RT | ||||
SET1 | C30_4 | 216 | 93 | 5.9 | 232 | 99 | 7.7 | 254 | 105 | 8.1 | ||
C30_6 | 230 | 86 | 6.3 | 256 | 94 | 8.2 | 269 | 101 | 8.6 | |||
C30_8 | 239 | 81 | 6.7 | 264 | 89 | 8.9 | 287 | 93 | 9.2 | |||
SET2 | C60_4 | 327 | 169 | 8.6 | 358 | 175 | 10.9 | 376 | 181 | 11.7 | ||
C60_6 | 340 | 158 | 9.2 | 373 | 167 | 10.5 | 398 | 170 | 11.4 | |||
C60_8 | 335 | 145 | 10.9 | 366 | 153 | 12.7 | 382 | 162 | 12.1 | |||
C60_10 | 371 | 151 | 10.3 | 394 | 172 | 11.7 | 415 | 183 | 12.8 | |||
SET3 | C90_6 | 529 | 245 | 11.5 | 565 | 264 | 12.5 | 596 | 278 | 14.9 | ||
C90_8 | 548 | 227 | 12.4 | 577 | 249 | 14.3 | 605 | 256 | 16.5 | |||
C90_10 | 556 | 241 | 13.2 | 591 | 255 | 14.7 | 613 | 269 | 16.8 | |||
C90_13 | 540 | 232 | 14.5 | 585 | 243 | 15.3 | 622 | 255 | 17.6 | |||
C90_16 | 591 | 263 | 15.7 | 627 | 298 | 16.5 | 650 | 309 | 18.3 | |||
SET4 | C120_6 | 623 | 347 | 20.4 | 655 | 365 | 22.1 | 688 | 373 | 23.4 | ||
C120_8 | 649 | 335 | 21.5 | 673 | 359 | 24.4 | 697 | 386 | 25.5 | |||
C120_10 | 667 | 302 | 23.2 | 698 | 344 | 26.8 | 726 | 357 | 28.1 | |||
C120_13 | 688 | 316 | 24.9 | 723 | 356 | 28.5 | 755 | 372 | 29.7 | |||
C120_16 | 675 | 292 | 26.6 | 716 | 315 | 29.9 | 743 | 336 | 31.6 | |||
C120_20 | 634 | 284 | 29.2 | 682 | 304 | 33.5 | 701 | 325 | 34.4 | |||
平均 | 487 | 220 | 15.1 | 519 | 239 | 17.2 | 543 | 251 | 18.4 | |||
T检验 | -17.3 | -7.0 | -- | -20.7 | -8.3 | -- | ||||||
P值 | 1.6E-12 | 1.1E-06 | -- | 8.8E-14 | 1.2E-07 | -- |
1 | Govindan K, Jafarian A, Khodaverdi R, et al. Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food[J]. International Journal of Production Economics, 2014, 152: 9-28. |
2 | Wang S, Tao F, Shi Y. Optimization of location-routing problem for cold chain logistics considering carbon footprint[J]. International Journal of Environmental Research and Public Health, 2018, 15(1): 86. |
3 | Macedo R, Alves C, Hanafi S, et al. Skewed general variable neighborhood search for the location routing scheduling problem[J]. Computers & Operations Research, 2015, 61: 143-152. |
4 | 马艳芳, 应斌, 周晓阳, 等. 基于冲突合作关系的生鲜选址-路径多主体优化模型与算法[J]. 系统工程理论与实践, 2020, 40(12): 3194-3209. |
Ma Y F, Ying B, Zhou X Y, et al. Multi-agent optimization model and algorithm for perishable food location-routing problem with conflict and coordination[J]. Systems Engineering-Theory & Practice, 2020, 40(12): 3194-3209. | |
5 | 王成林, 郑颖, 皇甫宜龙, 等. 生鲜类物流配送网络选址-路径优化问题研究[J]. 数学的实践与认识, 2020, 50(10): 33-43. |
Wang C L, Zheng Y, Huangfu Y L, et al. Study on optimization problem for location-routing of fresh logistics distribution network[J]. Mathematics in Practice and Theory, 2020, 50(10): 33-43. | |
6 | Devapriya P, Ferrell W, Geismar N. Integrated production and distribution scheduling with a perishable product[J]. European Journal of Operational Research, 2017, 259(3): 906-916. |
7 | 方文婷, 艾时钟, 王晴, 等. 基于混合蚁群算法的冷链物流配送路径优化研究[J]. 中国管理科学, 2019, 27(11):107-115. |
Fang W T, Ai S Z, Wang Q, et al. Research on cold chain logistics distribution path optimization based on hybrid ant colony algorithm[J]. Chinese Journal of Management Science, 2019, 27(11):107-115. | |
8 | Murray C C, Chu A G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86-109. |
9 | Carlsson J G, Song S. Coordinated logistics with a truck and a drone[J]. Management Science, 2018, 64(9): 4052-4069. |
10 | Chang Y S, Lee H J. Optimal delivery routing with wider drone-delivery areas along a shorter truck-route[J]. Expert Systems with Applications, 2018, 104: 307-317. |
11 | Boysen N, Briskorn D, Fedtke S, et al. Drone delivery from trucks: Drone scheduling for given truck routes[J]. Networks, 2018, 72(4): 506-527. |
12 | Karak A, Abdelghany K. The hybrid vehicle-drone routing problem for pick-up and delivery services[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 427-449. |
13 | Ham A M. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 1-14. |
14 | Moshref-Javadi M, Lee S, Winkenbach M. Design and evaluation of a multi-trip delivery model with truck and drones[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 136: 101887. |
15 | Ho G T S, Ip W H, Lee C K M, et al. Customer grouping for better resources allocation using GA based clustering technique[J]. Expert Systems with Applications, 2012, 39(2): 1979-1987. |
16 | Wang Z. Delivering meals for multiple suppliers: Exclusive or sharing logistics service[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 118: 496-512. |
17 | Dukkanci O, Kara B Y, Bektas T. The green location-routing problem[J]. Computers & Operations Research, 2019, 105: 187-202. |
18 | Wang H J, Du L J, Ma S H. Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 69: 160-179. |
19 | Beausoleil R P. “MOSS” multiobjective scatter search applied to non-linear multiple criteria optimization[J]. European Journal of Operational Research, 2006, 169(2): 426-449. |
20 | Martínez-Salazar I A, Molina J, Ángel-Bello F, et al. Solving a bi-objective transportation location routing problem by metaheuristic algorithms[J]. European Journal of Operational Research, 2014, 234(1): 25-36. |
21 | Mamaghani E J, Davari S. The bi-objective periodic closed loop network design problem[J]. Expert Systems with Applications, 2020, 144: 113068. |
22 | Leng L L, Zhang J L, Zhang C M, et al. Decomposition-based hyperheuristic approaches for the bi-objective cold chain considering environmental effects[J]. Computers and Operations Research, 2020, 123: 105043. |
23 | Feng M, Fry M J, Ohlmann J W. Model-based capacitated clustering with posterior regularization[J]. European Journal of Operational Research, 2018, 271(2): 594-605. |
24 | Wang Y, Zhang J, Guan X Y, et al. Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constraints[J]. Expert Systems with Applications, 2021, 165: 113838. |
25 | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002(6): 182-197. |
26 | 王晶,刘昊天,赵然. 基于食品安全的生鲜食品冷链运营优化研究[J]. 系统工程理论与实践, 2018, 38(1): 122-134. |
Wang J, Liu H T, Zhao R. The optimization of cold chain operation based on fresh food safety[J]. Systems Engineering-Theory & Practice, 2018, 38(1): 122-134. | |
27 | Solomon M. Algorithms for the vehicle routing and scheduling problems with time window constraints[J]. Operations Research, 1987, 35(2): 254-265. |
28 | Farrokhi‑Asl H, Makui A, Jabbarzadeh A, et al. Solving a multi-objective sustainable waste collection problem considering a new collection network[J]. Operational Research, 2020, 20: 1977-2015. |
29 | Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. |
[1] | ZHU Jiang-hua, ZHANG Xu-mei, DAN Bin, LIU Mo-lin, MA Song-xuan. Government Subsidy Strategies of Fresh Products Considering Capital Constraints under Uncertain Demand [J]. Chinese Journal of Management Science, 2022, 30(8): 231-242. |
[2] | WANG Yong, ZHANG Jie, LIU Yong, XU Mao-zeng. Optimization of Fresh Goods Multi-Center Vehicle Routing Problem Based on Resource Sharing and Temperature Control [J]. Chinese Journal of Management Science, 2022, 30(11): 272-285. |
[3] | GONG Yuan-yuan, XIAO Yong-bo. Dynamic Inventory Rationing for Cross-Season Sales of Fresh Products [J]. Chinese Journal of Management Science, 2019, 27(7): 83-93. |
[4] | XIAO Yong-bo, WU Peng, WANG Ya-lan. Pricing Strategies for Fresh Products with Multiple Quality Levels Based on Customer Choice Behavior [J]. Chinese Journal of Management Science, 2010, 18(1): 58-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|