Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (1): 209-220.doi: 10.16381/j.cnki.issn1003-207x.2024.0483
Previous Articles Next Articles
Zhongmin Pu1, Chenxi Zhang2, Zeshui Xu1()
Received:
2024-03-28
Revised:
2024-05-30
Online:
2025-01-25
Published:
2025-02-14
Contact:
Zeshui Xu
E-mail:xuzeshui@263.net
CLC Number:
Zhongmin Pu, Chenxi Zhang, Zeshui Xu. A Review of Consumer Preference Mining Based on Online Reviews[J]. Chinese Journal of Management Science, 2025, 33(1): 209-220.
"
行业 | 评论数据来源 | 应用场景 | 应用特点 |
---|---|---|---|
旅游业 | Tripadvisor、Yelp、Booking、携程、去哪儿、大众点评等 | 酒店或餐厅推荐、服务质量改进、游客细分、旅游需求预测 | 注重游客体验和满意度,季节性和地域性强 |
电子产品 | Amazon、淘宝等 | 产品推荐、产品改进、竞品分析、产品满意度评估 | 关注产品功能和性能,更新换代快 |
汽车 | Edmund、汽车之家、太平洋汽车等 | 汽车推荐、服务满意度评估、销量预测 | 评论内容专业性强,新能源汽车领域关注度较高 |
在线教育 | MOOC、Coursera、edX等 | 多模态情感识别、课程推荐、平台优化、用户体验 | 个性化需求显著,强调多模态数据融合 |
在线医疗 | 好大夫、丁香医生等 | 医生推荐、医疗服务质量提升、患者满意度评估 | 个性化需求明显,强调多源数据融合 |
1 | Lee T Y, Bradlow E T. Automated marketing research using online customer reviews[J]. Journal of Marketing Research, 2011, 48(5): 881-894. |
2 | Ren P J, Liu X D, Zhang W G. Consumer preference analysis: Diverse preference learning with online ratings[J]. Omega-International Journal of Management Science, 2024, 125: 103019. |
3 | Xiao S S, Wei C P, Dong M. Crowd intelligence: Analyzing online product reviews for preference measurement[J].Information & Management,2016,53(2): 169-182. |
4 | Archak N, Ghose A, Ipeirotis P G. Deriving the pricing power of product features by mining consumer reviews[J]. Management Science, 2011, 57(8): 1485-1509. |
5 | 王安宁, 张强, 彭张林,等. 在线评论的行为影响与价值应用研究综述[J]. 中国管理科学, 2021, 29(12): 191-202. |
Wang A N, Zhang Q, Peng Z L,et al. A review of behavioral influence and value application for online reviews[J]. Chinese Journal of Management Science, 2021, 29(12): 191-202. | |
6 | 李杨, 徐泽水, 王新鑫. 基于在线评论的情感分析方法及应用[J]. 控制与决策, 2023, 38(2): 304-317. |
Li Y, Xu Z S, Wang X X. Methods and applications of sentiment analysis with online reviews[J]. Control and Decision, 2023, 38(2): 304-317. | |
7 | 汪鹏, 邓钰佳, 方兴华. 在线评论识别用户需求的研究热点与前沿分析[J]. 标准科学, 2023(5): 111-116. |
Wang P, Deng Y J, Fang X H. Research foci and frontier of user demands identification based on online reviews[J]. Standard Science, 2023(5): 111-116. | |
8 | Zhang L, Chu X N, Xue D Y. Identification of the to-be-improved product features based on online reviews for product redesign[J]. International Journal of Production Research, 2019, 57(8): 2464-2479. |
9 | 李良强, 袁华, 叶开, 等. 基于在线评论词向量表征的产品属性提取[J]. 系统工程学报, 2018, 33(5): 687-697. |
Li L Q, Yuan H, Ye K, et al. Extraction product features from online reviews based on word-vector-representation[J]. Journal of Systems Engineering, 2018, 33(5): 687-697. | |
10 | Moreo A, Romero M, Castro J L, et al. Lexicon-based comments-oriented news sentiment analyzer system[J]. Expert Systems with Applications, 2012, 39(10): 9166-9180. |
11 | Zhang C X, Xu Z S, Gou X J, et al. An online reviews-driven method for the prioritization of improvements in hotel services[J]. Tourism Management, 2021, 87: 104382. |
12 | Shi L L, Lin J, Liu G Q. Product feature extraction from Chinese online reviews: Application to product improvement[J]. Rairo-Operations Research, 2023, 57(3): 1125-1147. |
13 | Ma J, Harrison M. Continuous preference trend mining for optimal product design with multiple profit cycles[J]. Journal of Mechanical Design, 2014, 136(6): 061002. |
14 | 林铭炜, 许江松, 林佳胤,等. 面向在线教育的学习者情感识别综述[J]. 控制与决策, 2024, 39(4): 1057-1074. |
Lin M W, Xu J S, Lin J Y,et al. A review of emotion recognition of learners for online education[J]. Control and Decision, 2024, 39(4): 1057-1074. | |
15 | Tubishat M, Idris N, Abushariah M A M. Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges[J]. Information Processing & Management, 2018, 54(4): 545-563. |
16 | Qiu G, Liu B, Bu J J, et al. Expanding domain sentiment lexicon through double propagation[C] // Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena California, USA, July 11-17, 2009. |
17 | Tang D Y, Qin B, Liu T. Deep learning for sentiment analysis: Successful approaches and future challenges[J]. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 2015, 5(6): 292-303. |
18 | Schouten K, Frasincar F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 813-830. |
19 | Zhang W X, Li X, Deng Y, et al. A survey on aspect-based sentiment analysis: Tasks, methods, and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11019-11038. |
20 | 徐健,张婧,宋玲钰,等. 基于RoBERTa-BiLSTM-CRF RoBERTa-BiLSTM-CRF融合模型的在线评论细粒度情感分析[J]. 系统工程理论与实践, 2023, 43(12): 3519-3536. |
Xu J, Zhang J, Song L Y,et al. Fine-grained sentiment analysis of online reviews based on RoBERTa-BiLSTM-CRF[J]. Systems Engineering-Theory & Practice, 2023, 43(12): 3519-3536. | |
21 | Bian Y W, Ye R S, Zhang J, et al. Customer preference identification from hotel online reviews: A neural network based fine-grained sentiment analysis[J]. Computers & Industrial Engineering, 2022, 172: 108648. |
22 | Liu F, Liao H C, Al-Barakati A. Physician selection based on user-generated content considering interactive criteria and risk preferences of patients[J]. Omega-International Journal of Management Science, 2023, 115: 102784. |
23 | Al-Smadi M, Al-Ayyoub M, Jararweh Y, et al. Enhancing aspect-based sentiment analysis of arabic hotels’reviews using morphological, syntactic and semantic features[J]. Information Processing & Management, 2019, 56(2): 308-319. |
24 | Jin W Q, Zhao B, Zhang L W, et al. Back to common sense: Oxford dictionary descriptive knowledge augmentation for aspect-based sentiment analysis[J]. Information Processing & Management, 2023, 60(3): 103260. |
25 | Bi J W, Liu Y, Fan Z P, et al. Modelling customer satisfaction from online reviews using ensemble neural network and effect-based kano model[J]. International Journal of Production Research, 2019, 57(22): 7068-7088. |
26 | Kim M J, Yoo H Y. Identification of key service features for evaluating the quality of metaverse services: A text mining approach[J]. IEEE Access, 2024(12): 6719-6728. |
27 | Qin J D, Zheng P, Wang X J. Product redesign and innovation based on online reviews: A multistage combined search method[J]. INFORMS Journal on Computing, 2024,36(3):742-765. |
28 | Qi J Y, Zhang Z P, Jeon S, et al. Mining customer requirements from online reviews: A product improvement perspective[J]. Information & Management, 2016, 53(8): 951-963. |
29 | Wang A N, Zhang Q, Zhao S Y, et al. A review-driven customer preference measurement model for product improvement:Sentiment-based importance-performance analysis[J]. Information Systems and E-Business Management, 2020, 18(1): 61-88. |
30 | Decker R, Trusov M. Estimating aggregate consumer preferences from online product reviews[J]. International Journal of Research in Marketing, 2010, 27(4): 293-307. |
31 | 王安宁, 张强, 彭张林,等. 融合特征情感和产品参数的客户感知偏好模型[J]. 中国管理科学, 2020, 28(9): 199-208. |
Wang A N, Zhang Q, Peng Z L, et al. Customer preference model considering feature sentiment and product parameters[J]. Chinese Journal of Management Science, 2020, 28(9): 199-208. | |
32 | 张振刚, 罗泰晔. 基于在线评论数据挖掘和Kano模型的产品需求分析[J].管理评论,2022, 34(11): 109-117. |
Zhang Z G, Luo T Y. Product Demand analysis based on online review data mining and Kano model[J]. Management Review, 2022, 34(11): 109-117. | |
33 | Zhao M, Liu M J, Xu C, et al. Classifying travellers’requirements from online reviews: An improved kano model[J]. International Journal of Contemporary Hospitality Management, 2024, 36(1): 91-112. |
34 | 沈超, 王安宁, 陆效农,等. 基于在线评论的客户偏好趋势挖掘[J]. 系统工程学报, 2021, 36(3): 289-301. |
Shen C, Wang A N, Lu X N,et al. Customer preference trend mining based on online reviews[J]. Journal of Systems Engineering, 2021, 36(3): 289-301. | |
35 | Sha K X, Li Y P, Dong Y N, et al. Modelling the dynamics of customer requirements considering their lability and sensitivity in product development[J]. Advanced Engineering Informatics, 2024, 59: 102296. |
36 | 李金海,何有世,马云蕾,等. 基于在线评论信息挖掘的动态用户偏好模型构建[J]. 情报杂志, 2016, 35(9): 192-198. |
Li J H, He Y S, Ma Y L, et al. Building dynamic user preference model based on information mining of online reviews[J]. Journal of Intelligence, 2016, 35(9): 192-198. | |
37 | Jiang H M, Kwong C K, Kremer G E O, et al. Dynamic modelling of customer preferences for product design using denfis and opinion mining[J]. Advanced Engineering Informatics, 2019, 42: 100969. |
38 | Zuo M H, Angelopoulos S, Liang Z Y, et al. Blazing the trail: Considering browsing path dependence in online service response strategy[J]. Information Systems Frontiers, 2023, 25(4): 1605-1619. |
39 | 孙冰, 沈瑞. 基于在线评论的产品需求偏好判别与客户细分——以智能手机为例[J]. 中国管理科学, 2023, 31(3): 217-227. |
Sun B, Shen R. Online reviews for product demand preference discrimination and customer segmentation: A case study of the smart phone data[J]. Chinese Journal of Management Science, 2023, 31(3): 217-227. | |
40 | Ahani A, Nilashi M, Ibrahim O, et al. Market segmentation and travel choice prediction in spa hotels through tripadvisor’s online reviews[J]. International Journal of Hospitality Management, 2019, 80: 52-77. |
41 | Ahani A, Nilashi M, Yadegaridehkordi E, et al. Revealing customers’satisfaction and preferences through online review analysis: The case of canary islands hotels[J]. Journal of Retailing and Consumer Services, 2019, 51: 331-343. |
42 | Joung J, Kim H M. Approach for importance-performance analysis of product attributes from online reviews[J]. Journal of Mechanical Design, 2021, 143(8): 081705. |
43 | Joung J, Kim H. Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews[J]. International Journal of Information Management, 2023, 70: 102641. |
44 | Zhao M, Li L Y, Xu Z S. Study on hotel selection method based on integrating online ratings and reviews from multi-websites[J]. Information Sciences, 2021, 572: 460-481. |
45 | Haubl G, Trifts V. Consumer decision making in online shopping environments: The effects of interactive decision aids[J]. Marketing Science, 2000, 19(1): 4-21. |
46 | Liu P D, Teng F. Probabilistic linguistic todim method for selecting products through online product reviews[J].Information Sciences,2019,485: 441-455. |
47 | Veisi H, Aflaki N, Parsafard P. Variance-based features for keyword extraction in persian and english text documents[J]. Scientia Iranica, 2020, 27(3): 1301-1315. |
48 | Zhao M, Shen X Y, Liao H C, et al. Selecting products through text reviews: An mcdm method incorporating personalized heuristic judgments in the prospect theory[J]. Fuzzy Optimization and Decision Making, 2022, 21(1): 1-24. |
49 | Zhang H Y, Pu J, Wang J Q, et al. A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com[J]. Tourism Management, 2017, 59: 281-297. |
50 | Liu Y, Wu B J, Fan Z P. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory[J]. Information Fusion, 2017, 36: 149-161. |
51 | Liao S K, Hsu H Y, Chang K L. Otas selection for hot spring hotels by a hybrid MCDM model[J]. Mathematical Problems in Engineering, 2019,2019(1):4251362. |
52 | Cali S, Balaman S Y. Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment[J]. Computers & Industrial Engineering, 2019, 129: 315-332. |
53 | Liang X, Liu P D, Wang Z H. Hotel selection utilizing online reviews: A novel decision support model based on sentiment analysis and di-vikor method[J]. Technological and Economic Development of Economy, 2019, 25(6): 1139-1161. |
54 | Zhang Z Y, Guo J, Zhang H R, et al. Product selection based on sentiment analysis of online reviews: An intuitionistic fuzzy todim method[J]. Complex & Intelligent Systems, 2022, 8(4): 3349-3362. |
55 | Dahooie J H, Raafat R, Qorbani A R, et al. An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making[J]. Technological Forecasting and Social Change, 2021, 173: 121158. |
56 | Pu Z M, Zhang C X, Xu Z S, et al. A fuzzy decision support model for online review-driven hotel selection by considering risk attitudes of customers[J]. Journal of the Operational Research Society, 2023, 75(7): 1407-1420. |
57 | Yang X X, Zhou S J, Cao M. An approach to alleviate the sparsity problem of hybrid collaborative filtering based recommendations: The product-attribute perspective from user reviews[J]. Mobile Networks & Applications, 2020, 25(2): 376-390. |
58 | Rhanoui M, Mikram M, Yousfi S, et al. A hybrid recommender system for patron driven library acquisition and weeding[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(6): 2809-2819. |
59 | Ma Y, Chen G Q, Wei Q. Finding users preferences from large-scale online reviews for personalized recommendation[J]. Electronic Commerce Research, 2017, 17(1): 3-29. |
60 | 王克勤, 王志义, 李靖,等. 面向产品设计改进的顾客偏好分析与预测[J]. 计算机集成制造系统, 2024, 30(6):1989-2004. |
Wang K Q, Wang Z Y, Li J,et al. Customer preference analysis and prediction for product design improvement[J]. Computer Integrated Manufacturing Systems, 2024,30(6):1989-2004. | |
61 | Asadabadi M R, Saberi M, Sadghiani N S, et al. Enhancing the analysis of online product reviews to support product improvement: Integrating text mining with quality function deployment[J]. Journal of Enterprise Information Management, 2024, 30(6): 1989-2004. |
62 | 徐一钊, 闫宏斌, 马铁驹. 竞争性环境下在线评论驱动的新产品开发:基于QFD的视角[J]. 系统工程, 2022, 40(5): 54-69. |
Xu Y Z, Yan H B, Ma T J. online review-driven new product development under competitive environments: A QFD perspective[J]. Systems Engineering, 2022, 40(5): 54-69. |
[1] | SUN Bing, SHEN Rui. Online Reviews for Product Demand Preference Discrimination and Customer Segmentation: A Case Study of the Smart Phone Data [J]. Chinese Journal of Management Science, 2023, 31(3): 217-227. |
[2] | ZHANG Jing, ZHOU Yi-xin, HU Han, BIAN Yi-wen. Identification of Usefulness for Online Reviews Based on Knowledge Adoption Model and Multilayer Perceptron Neural Network [J]. Chinese Journal of Management Science, 2022, 30(4): 264-274. |
[3] | GAO Hong-ming, LIU Hong-wei, ZHAN Ming-jun, FAN Meng-ting, LIANG Zhou-yang. Research on the Impact of Online Reviews and Product Involvement on Virtual Shopping-Cart Decision-making Based on Consumer Involvement [J]. Chinese Journal of Management Science, 2021, 29(6): 211-222. |
[4] | SHEN Chao, WANG An-ning, FANG Zhao, ZHANG Qiang. Trend Mining of Product Requirements from Online Reviews [J]. Chinese Journal of Management Science, 2021, 29(5): 211-220. |
[5] | FENG Kun, YANG Qiang, CHANG Xin-yi, LI Yan-lai. Customer Satisfaction Evaluation Method for Fresh E-commerce Based on Online Reviewsand Stochastic Dominance Rules [J]. Chinese Journal of Management Science, 2021, 29(2): 205-216. |
[6] | WANG An-ning, ZHANG Qiang, PENG Zhang-lin, YANG Shan-lin. A Review of Behavioral Influence and Value Application for Online Reviews [J]. Chinese Journal of Management Science, 2021, 29(12): 191-202. |
[7] | WANG An-ning, ZHANG Qiang, PENG Zhang-lin, LU Xiao-nong, FANG Zhao. Customer Preference Model Considering Feature Sentiment and Product Parameters [J]. Chinese Journal of Management Science, 2020, 28(9): 199-208. |
[8] | MIAO Xiu-mei, CHEN Ye-tian, MI Chuan-min. Study on Consumer Satisfaction of Tangshan Hot Springs based on ISM and Online Reviews [J]. Chinese Journal of Management Science, 2019, 27(7): 186-194. |
[9] | WANG An-ning, ZHANG Qiang, PENG Zhang-lin, NI Xin. Identifying Regional Demand Preferences from Online Reviews [J]. Chinese Journal of Management Science, 2019, 27(7): 167-176. |
[10] | SHI Wen-hua, ZHONG Bi-yuan, ZHANG Qi. Comparing the Effects of Online Reviews and Online Comments on Box-office Incomes [J]. Chinese Journal of Management Science, 2017, 25(10): 162-170. |
[11] | LIU Wei, XU Peng-tao. A Study on Influencing Factors of the Helpfulness of Online Reviews in O2O of Restaurant Industry——Based on Tobit Model [J]. Chinese Journal of Management Science, 2016, 24(5): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|