Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (12): 140-152.doi: 10.16381/j.cnki.issn1003-207x.2021.2452
Previous Articles Next Articles
Received:
2021-11-27
Revised:
2024-01-16
Online:
2024-12-25
Published:
2025-01-02
Contact:
Kunpeng Li
E-mail:likp@mail.hust.edu.cn
CLC Number:
Kunpeng Li, Xuefang Han. Research on Autonomous Driving Control Mechanism and Vehicle Scheduling in Smart City Based on Global Perspective[J]. Chinese Journal of Management Science, 2024, 32(12): 140-152.
"
符号 | 定义 | 符号 | 定义 |
---|---|---|---|
网络中东西方向的道路集合, | 车辆k到达路口i前,其行驶路段对应的等级 | ||
网络中南北方向的道路集合, | 路段(i, j)的长度 | ||
十字路口节点集合, | 路网中正在行驶的车辆集合, | ||
路段集合, | 路网中经过路口i的车辆集合, | ||
G | 路段等级集合, | 待调度车辆集合, | |
Fij | 辅助参数,当路口i与j连通时为1,否则为0; | 待调度车辆v出发地和目的地对应的路口 | |
无人驾驶车辆的行驶速度 | 0-1变量,待调度车辆v经过路段 | ||
车辆在路口避让一辆车的等待时间 | 0-1变量,待调度车辆v需在路口i等待车辆m先经过时为1,否则为0 | ||
车辆转弯一次的惩罚时间 | 0-1变量,待调度车辆v从路口i到路口j需要转弯时为1,否则为0 | ||
st | 待调度车辆发出行驶请求的时间 | 实数变量,表示待调度车辆v预计到达路口i的时刻 | |
表示路网中经过路口i的车辆k对应的等级。 | 实数变量,表示待调度车辆v实际到达路口i的时刻 | ||
B | 足够大的正整数,用于公式线性化 |
"
算例 | CPLEX | 改进A*算法 | Gap1 (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper(h) | Lower(h) | Time0 (s) | DT0 (h) | WT0(h) | Turn0 | Obj1 (h) | Time1 (s) | DT1 (h) | WT1(h) | Turn1 | ||||
5-2-1-1 | 1.060 | 1.060 | 0.26 | 0.94 | 0.090 | 1 | 1.130 | 0.002 | 1.04 | 0.060 | 1 | 0.00 | 6.19 | |
5-2-2-1 | 1.805 | 1.805 | 33.70 | 1.52 | 0.165 | 4 | 1.870 | 0.003 | 1.60 | 0.150 | 4 | 0.00 | 3.48 | |
5-4-1-1 | 1.110 | 1.110 | 0.56 | 0.96 | 0.090 | 2 | 1.110 | 0.002 | 0.96 | 0.090 | 2 | 0.00 | 0.00 | |
5-4-2-1 | 1.375 | 1.375 | 4.13 | 1.18 | 0.105 | 3 | 1.440 | 0.003 | 1.26 | 0.090 | 3 | 0.00 | 4.51 | |
5-6-1-1 | 1.555 | 1.555 | 9.56 | 1.24 | 0.225 | 3 | 1.625 | 0.005 | 1.34 | 0.225 | 2 | 0.00 | 4.31 | |
5-6-2-1 | 1.430 | 1.430 | 4.77 | 1.22 | 0.090 | 4 | 1.430 | 0.002 | 1.22 | 0.090 | 4 | 0.00 | 0.00 | |
5-8-1-1 | 0.850 | 0.850 | 0.22 | 0.58 | 0.210 | 2 | 0.870 | 0.006 | 0.54 | 0.300 | 1 | 0.00 | 2.30 | |
5-8-2-1 | 1.470 | 1.470 | 4.64 | 1.14 | 0.270 | 2 | 1.470 | 0.007 | 1.14 | 0.270 | 2 | 0.00 | 0.00 | |
10-2-1-1 | 2.210 | 1.816 | 7201.27 | 1.94 | 0.180 | 3 | 2.290 | 0.021 | 1.96 | 0.180 | 5 | 17.81 | 3.49 | |
10-2-2-1 | 2.725 | 2.277 | 7200.36 | 2.38 | 0.225 | 4 | 2.820 | 0.021 | 2.52 | 0.210 | 3 | 16.46 | 3.37 | |
10-2-4-1 | 3.655 | 2.830 | 7200.45 | 3.16 | 0.345 | 5 | 3.685 | 0.023 | 3.22 | 0.345 | 4 | 22.57 | 0.81 | |
10-2-4-2 | 5.570 | 4.040 | 7231.02 | 4.88 | 0.450 | 8 | 5.830 | 0.024 | 4.96 | 0.510 | 12 | 27.47 | 4.46 | |
10-2-6-1 | 6.315 | 4.540 | 7243.56 | 5.64 | 0.525 | 5 | 6.325 | 0.021 | 5.62 | 0.495 | 7 | 28.11 | 0.16 | |
10-2-6-2 | 8.880 | 5.840 | 7200.42 | 7.68 | 0.960 | 8 | 8.925 | 0.036 | 7.62 | 0.975 | 11 | 34.23 | 0.50 | |
10-4-1-1 | 1.955 | 1.580 | 7201.55 | 1.40 | 0.435 | 4 | 2.060 | 0.114 | 1.64 | 0.270 | 5 | 19.16 | 5.10 | |
10-4-2-1 | 1.780 | 1.613 | 7200.16 | 1.42 | 0.270 | 3 | 1.780 | 0.027 | 1.42 | 0.270 | 3 | 9.36 | 0.00 | |
10-4-4-1 | 4.120 | 2.730 | 7200.17 | 3.04 | 0.870 | 7 | 4.395 | 0.022 | 3.30 | 0.855 | 8 | 33.74 | 6.26 | |
10-4-4-2 | 7.145 | 4.577 | 7200.36 | 5.42 | 1.455 | 9 | 7.365 | 0.025 | 5.64 | 1.545 | 6 | 35.94 | 2.99 | |
10-4-6-1 | 7.560 | 4.800 | 7200.78 | 5.76 | 1.560 | 8 | 7.970 | 0.06 | 6.14 | 1.590 | 8 | 36.51 | 5.14 | |
10-4-6-2 | 8.730 | 5.435 | 7200.53 | 6.78 | 1.710 | 8 | 8.880 | 0.108 | 6.96 | 1.620 | 10 | 37.74 | 1.69 | |
10-6-1-1 | 1.840 | 1.840 | 5764.83 | 1.42 | 0.330 | 3 | 2.065 | 0.025 | 1.72 | 0.285 | 2 | 0.00 | 10.90 | |
10-6-2-1 | 3.075 | 1.940 | 7200.45 | 2.28 | 0.645 | 5 | 3.225 | 0.034 | 2.52 | 0.555 | 5 | 36.91 | 4.65 | |
10-6-4-1 | 4.285 | 2.706 | 7200.3 | 3.10 | 0.945 | 8 | 4.280 | 0.025 | 2.90 | 1.290 | 3 | 36.86 | -0.12 | |
10-6-4-2 | 5.730 | 3.730 | 7202.88 | 4.32 | 1.170 | 8 | 6.100 | 0.025 | 4.72 | 1.170 | 7 | 34.90 | 6.07 | |
10-6-6-1 | 7.160 | 4.002 | 7205.23 | 4.94 | 1.920 | 10 | 7.420 | 0.027 | 5.14 | 1.980 | 10 | 44.10 | 3.50 | |
10-6-6-2 | 5.240 | 3.500 | 7239.05 | 3.80 | 1.110 | 11 | 5.370 | 0.026 | 4.08 | 1.050 | 8 | 33.21 | 2.42 | |
10-8-1-1 | 1.720 | 1.720 | 2934.7 | 1.12 | 0.540 | 2 | 1.745 | 0.029 | 1.16 | 0.555 | 1 | 0.00 | 1.43 | |
10-8-2-1 | 2.500 | 1.845 | 7203.34 | 1.72 | 0.630 | 5 | 2.510 | 0.029 | 1.76 | 0.630 | 4 | 26.20 | 0.40 | |
10-8-4-1 | 6.375 | 3.479 | 7204.48 | 4.20 | 2.055 | 4 | 6.325 | 0.055 | 4.12 | 2.085 | 4 | 45.43 | -0.79 | |
10-8-4-2 | 6.055 | 3.330 | 7200.34 | 4.12 | 1.755 | 6 | 6.265 | 0.027 | 4.30 | 1.815 | 5 | 45.00 | 3.35 | |
10-8-6-1 | 10.495 | 5.010 | 7200.28 | 6.49 | 3.765 | 8 | 10.670 | 0.032 | 6.74 | 3.720 | 7 | 52.26 | 1.64 | |
10-8-6-2 | 8.950 | 4.460 | 7200.31 | 5.74 | 3.000 | 7 | 8.805 | 0.029 | 5.76 | 2.745 | 10 | 50.16 | -1.65 |
"
算例 | 改进A*算法 | 传统A*算法 | Δ1 (h) | Δ2 | Δ3 (s) | ||||
---|---|---|---|---|---|---|---|---|---|
Obj1(h) | Turn1 | Time1(s) | Obj2(h) | Turn2 | Time2(s) | ||||
20-2-10-1 | 22.885 | 35 | 0.329 | 23.230 | 68 | 0.328 | 0.345 | 33 | -0.001 |
20-2-10-2 | 22.950 | 25 | 0.316 | 23.635 | 62 | 0.330 | 0.685 | 37 | 0.014 |
20-2-20-1 | 44.350 | 42 | 0.309 | 45.070 | 103 | 0.336 | 0.720 | 61 | 0.027 |
20-2-20-2 | 38.910 | 40 | 0.329 | 39.300 | 89 | 0.337 | 0.390 | 49 | 0.008 |
20-2-40-1 | 57.785 | 62 | 0.348 | 58.700 | 122 | 0.343 | 0.915 | 60 | -0.005 |
20-2-40-2 | 79.330 | 91 | 0.333 | 80.500 | 189 | 0.318 | 1.170 | 98 | -0.015 |
20-4-10-1 | 25.705 | 18 | 0.332 | 26.080 | 57 | 0.351 | 0.375 | 39 | 0.019 |
20-4-10-2 | 27.115 | 23 | 0.328 | 28.130 | 72 | 0.331 | 1.015 | 49 | 0.003 |
20-4-20-1 | 46.030 | 41 | 0.330 | 46.905 | 101 | 0.352 | 0.875 | 60 | 0.022 |
20-4-20-2 | 38.660 | 31 | 0.360 | 39.185 | 61 | 0.345 | 0.525 | 30 | -0.015 |
20-4-40-1 | 74.445 | 60 | 0.309 | 74.735 | 148 | 0.374 | 0.290 | 88 | 0.065 |
20-4-40-2 | 77.490 | 75 | 0.326 | 78.930 | 156 | 0.355 | 1.440 | 81 | 0.029 |
20-6-10-1 | 30.720 | 13 | 0.322 | 31.345 | 59 | 0.387 | 0.625 | 46 | 0.065 |
20-6-10-2 | 23.725 | 18 | 0.326 | 23.825 | 45 | 0.325 | 0.100 | 27 | -0.001 |
20-6-20-1 | 42.275 | 38 | 0.330 | 42.865 | 91 | 0.323 | 0.590 | 53 | -0.007 |
20-6-20-2 | 46.000 | 38 | 0.321 | 46.175 | 106 | 0.407 | 0.175 | 68 | 0.086 |
20-6-40-1 | 82.405 | 56 | 0.324 | 84.310 | 155 | 0.340 | 1.905 | 99 | 0.016 |
20-6-40-2 | 94.310 | 63 | 0.319 | 96.355 | 194 | 0.346 | 2.045 | 131 | 0.027 |
20-8-10-1 | 32.600 | 15 | 0.438 | 32.540 | 51 | 0.343 | -0.060 | 36 | -0.095 |
20-8-10-2 | 34.250 | 21 | 0.370 | 34.615 | 80 | 0.348 | 0.365 | 59 | -0.022 |
20-8-20-1 | 50.805 | 29 | 0.337 | 51.985 | 87 | 0.338 | 1.180 | 58 | 0.001 |
20-8-20-2 | 45.170 | 26 | 0.332 | 45.355 | 61 | 0.364 | 0.185 | 35 | 0.032 |
20-8-40-1 | 103.140 | 59 | 0.333 | 105.240 | 193 | 0.373 | 2.100 | 134 | 0.040 |
20-8-40-2 | 102.135 | 60 | 0.350 | 102.745 | 155 | 0.473 | 0.610 | 95 | 0.123 |
40-2-10-1 | 40.325 | 31 | 4.742 | 39.320 | 83 | 4.699 | -1.005 | 52 | -0.043 |
40-2-10-2 | 42.655 | 37 | 4.771 | 43.850 | 110 | 4.865 | 1.195 | 73 | 0.094 |
40-2-20-1 | 90.140 | 77 | 4.718 | 90.470 | 200 | 4.741 | 0.330 | 123 | 0.023 |
40-2-20-2 | 84.740 | 71 | 4.733 | 85.360 | 195 | 4.686 | 0.620 | 124 | -0.047 |
40-2-40-1 | 150.155 | 112 | 4.858 | 152.080 | 311 | 4.792 | 1.925 | 199 | -0.066 |
40-2-40-2 | 145.275 | 125 | 4.772 | 145.810 | 335 | 4.822 | 0.535 | 210 | 0.050 |
40-4-10-1 | 45.225 | 26 | 4.710 | 45.595 | 100 | 4.902 | 0.370 | 74 | 0.192 |
40-4-10-2 | 46.035 | 35 | 4.691 | 45.310 | 100 | 5.094 | -0.725 | 65 | 0.403 |
40-4-20-1 | 61.760 | 36 | 4.782 | 61.925 | 101 | 5.011 | 0.165 | 65 | 0.229 |
40-4-20-2 | 108.765 | 72 | 4.819 | 108.200 | 204 | 4.962 | -0.565 | 132 | 0.143 |
40-4-40-1 | 155.200 | 82 | 4.788 | 156.970 | 305 | 4.811 | 1.770 | 223 | 0.023 |
40-4-40-2 | 184.695 | 102 | 4.779 | 185.595 | 364 | 4.796 | 0.900 | 262 | 0.017 |
40-6-10-1 | 54.805 | 23 | 4.765 | 53.345 | 88 | 4.919 | -1.460 | 65 | 0.154 |
40-6-10-2 | 54.320 | 19 | 4.718 | 54.355 | 107 | 4.970 | 0.035 | 88 | 0.252 |
40-6-20-1 | 106.975 | 45 | 4.786 | 108.035 | 174 | 4.902 | 1.060 | 129 | 0.116 |
40-6-20-2 | 93.750 | 45 | 4.770 | 94.440 | 168 | 4.785 | 0.690 | 123 | 0.015 |
40-6-40-1 | 199.900 | 61 | 4.764 | 198.970 | 272 | 5.054 | -0.930 | 211 | 0.290 |
40-6-40-2 | 196.705 | 58 | 4.860 | 197.310 | 264 | 4.808 | 0.605 | 206 | -0.052 |
40-8-10-1 | 56.045 | 21 | 4.946 | 56.235 | 103 | 4.780 | 0.190 | 82 | -0.166 |
40-8-10-2 | 56.125 | 16 | 4.784 | 56.200 | 66 | 5.065 | 0.075 | 50 | 0.281 |
40-8-20-1 | 98.100 | 36 | 4.779 | 98.135 | 153 | 4.959 | 0.035 | 117 | 0.180 |
40-8-20-2 | 125.110 | 29 | 4.785 | 125.220 | 198 | 4.718 | 0.110 | 169 | -0.067 |
40-8-40-1 | 202.205 | 63 | 4.751 | 201.025 | 289 | 4.896 | -1.180 | 226 | 0.145 |
40-8-40-2 | 193.525 | 57 | 4.782 | 193.630 | 260 | 5.143 | 0.105 | 203 | 0.361 |
Ave. | — | — | — | — | — | — | 0.490 | 100 | 0.061 |
"
模型求解结果 | 68 | 67 | 66 | 65 | 64 | 63 | 53 | 43 | 33 | 23 | 22 | 21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
预计到达时间 | 6.5 | 6.58 | 6.77 | 6.865 | 7.015 | 7.13 | 7.24 | 7.335 | 7.445 | 7.545 | 7.66 | 7.80 |
实际到达时间 | 6.5 | 6.61 | 6.785 | 6.895 | 7.03 | 7.16 | 7.255 | 7.365 | 7.445 | 7.56 | 7.66 | 7.80 |
改进A*算法结果 | 68 | 67 | 57 | 56 | 46 | 36 | 26 | 25 | 24 | 23 | 22 | 21 |
预计到达时间 | 6.5 | 6.58 | 6.71 | 6.79 | 6.92 | 7.08 | 7.195 | 7.31 | 7.44 | 7.55 | 7.68 | 7.82 |
实际到达时间 | 6.5 | 6.61 | 6.71 | 6.82 | 6.92 | 7.095 | 7.21 | 7.34 | 7.47 | 7.58 | 7.68 | 7.82 |
传统A*算法结果 | 68 | 67 | 57 | 56 | 46 | 45 | 44 | 34 | 24 | 23 | 22 | 21 |
预计到达时间 | 6.5 | 6.58 | 6.71 | 6.79 | 6.92 | 7.04 | 7.17 | 7.305 | 7.44 | 7.55 | 7.68 | 7.82 |
实际到达时间 | 6.5 | 6.61 | 6.71 | 6.82 | 6.92 | 7.07 | 7.185 | 7.32 | 7.47 | 7.58 | 7.68 | 7.82 |
"
模型求解结果 | 13 | 23 | 33 | 43 | 53 | 63 | 73 | 83 | 84 | 85 |
---|---|---|---|---|---|---|---|---|---|---|
预计到达时间 | 6.5 | 6.58 | 6.68 | 6.76 | 6.84 | 6.92 | 7 | 7.08 | 7.2 | 7.32 |
实际到达时间 | 6.5 | 6.58 | 6.68 | 6.76 | 6.84 | 6.92 | 7 | 7.08 | 7.2 | 7.32 |
改进A*算法结果 | 13 | 23 | 33 | 43 | 53 | 63 | 73 | 83 | 84 | 85 |
预计到达时间 | 6.5 | 6.58 | 6.68 | 6.76 | 6.84 | 6.92 | 7 | 7.08 | 7.2 | 7.32 |
实际到达时间 | 6.5 | 6.58 | 6.68 | 6.76 | 6.84 | 6.92 | 7 | 7.08 | 7.2 | 7.32 |
传统A*算法结果 | 13 | 23 | 24 | 25 | 35 | 45 | 55 | 65 | 75 | 85 |
预计到达时间 | 6.5 | 6.58 | 6.66 | 6.76 | 6.84 | 6.96 | 7.1 | 7.2 | 7.28 | 7.42 |
实际到达时间 | 6.5 | 6.58 | 6.66 | 6.76 | 6.84 | 6.96 | 7.1 | 7.2 | 7.28 | 7.42 |
1 | 吴俊杰, 郑凌方, 杜文宇, 等. 从风险预测到风险溯源:大数据赋能城市安全管理的行动设计研究[J]. 管理世界, 2020, 36(8): 189-202. |
Wu J J, Zheng L F, Du W Y, et al. From risk predicting to risk tracing: An action design research on big data-enables urban security management[J].Journal of Management World, 2020, 36(8): 189-202. | |
2 | 蹇娅婷,田丽君,吴鹏.自动驾驶背景下停车换乘点和共享停车位的优化管理[J].中国管理科学,2024, DOI:https://doi.org/10.16381/j.cnki.issn1003-207x.2022.1516 . |
Jian Y T, Tian L J, Wu P. Optimal management of park-and-ride point and shared parking spaces in the era of autonomous vehicles[J]. Chinese Journal of Management Science, 2024, DOI:https://doi.org/10.16381/j.cnki.issn1003-207x.2022.1516 . | |
3 | Cascetta E, Cartenì A, Francesco L D. Do autonomous vehicles drive like humans? A turing approach and an application to SAE automation Level 2 cars[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 1-15. |
4 | 姚旭生,马寿峰,叶顺强,等.驻足观望还是捷足先登?行人和无人驾驶车冲突演化博弈分析[J].中国管理科学, 2024, 32(7): 138-149. |
Yao X S, Ma S F, Ye S Q, et al. Yield or Go?Evolutionary game analysis of pedestrian and autonomous vehicle conflicts[J]. Chinese Journal of Management Science,2024, 32(7): 138-149. | |
5 | 霍治方, 刘刚. 智能化转型背景下自动驾驶产业化的中国实践[J].中国科技论坛, 2024(7): 95-109. |
Huo Z F, Liu G. China's practice of industrializing autonomous driving in the context of intelligent transformation[J]. Forum on Science and Technology in China, 2024(7): 95-109. | |
6 | Chouhan A P, Banda G. Autonomous intersection management: A heuristic approach[J]. IEEE Access, 2018(6): 53287-53295. |
7 | Robert S, Mark H. When human beings are like drunk robots: Driverless vehicles, ethics, and the future of transport[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 206-215. |
8 | 何洪文, 孙逢春, 李梦林. 我国综合交通工程科技现状及未来发展[J].中国工程科学,2023,25(6): 202-211. |
He H W, Sun F C, Li M L. Current status and future development of integrated transportation technology in china[J]. Strategic Study of CAE, 2023, 25(6): 202-211. | |
9 | 林添良, 姚瑜, 许文杰, 等. 基于环境识别的电动工程机械无人驾驶行走方法[J]. 机械工程学报, 2021, 57(10): 42-49. |
Lin T L, Yao Y, Xu W J, et al. Driverless walking method of electric construction machinery based on environment recognition[J]. Journal of Mechanical Engineering, 2021, 57(10): 42-49. | |
10 | Adnan N, Nordin S M, Bahruddin M A B, et al. How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle[J]. Transportation Research Part A: Policy and Practice, 2018, 118: 819-836. |
11 | Eliane H N, Roukaya I, Dorien K, et al. How to measure the impacts of shared automated electric vehicles on urban mobility[J]. Transportation Research Part D: Transport and Environment, 2021, 93: 1-18. |
12 | 徐向阳, 胡文浩, 董红磊, 等. 自动驾驶汽车测试场景构建关键技术综述[J]. 汽车工程, 2021, 43(4): 610-619. |
Xu X Y, Hu W H, Dong H L, et al. Review of key technologies for autonomous vehicle test scenario construction[J]. Automotive Engineering, 2021, 43(4): 610-619. | |
13 | Rahman M H, Mohamed A A, Wu Y N. A multi-vehicle communication system to assess the safety and mobility of connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 124:1-12. |
14 | 禹乐文, 罗霞, 刘仕焜.复杂车路环境下自动驾驶车辆换道仿真研究[J].计算机仿真,2021,38(5): 146-152. |
Yu L W, Luo X, Liu S K. Research on simulation of lane-changing for autonomous vehicles under complex road conditions[J]. Computer Simulation, 2021, 38(5): 146-152. | |
15 | 魏民祥, 滕德成, 吴树凡. 基于Frenet坐标系的自动驾驶轨迹规划与优化算法[J]. 控制与决策, 2021, 36(4): 815-824. |
Wei M X, Teng D C, Wu S F. Trajectory planning and optimization algorithm for automated driving based on Frenet coordinate system[J]. Control and Decision, 2021, 36(4): 815-824. | |
16 | Qian L P, Feng A Q, Yu N N, et al. Vehicular networking enabled vehicle state prediction via two-level quantized adaptive kalman filtering[J]. IEEE Internet of Things Journal, 2020, 7(8): 7181-7193. |
17 | Pan X, Chen B, Timotheou S, et al. A convex optimal control framework for autonomous vehicle intersection crossing[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24: 163–177. |
18 | Hao R, Zhang Y X, Ma W J, et al. Managing connected and automated vehicles with flexible routing at “lane-allocation-free” intersections[J]. Transportation Research Part C: Emerging Technologies, 2023, 152: 1-23. |
19 | Chow A H F, Sha R, Li S. Centralised and decentralised signal timing optimisation approaches for network traffic control[J]. Transportation Research Part C: Emerging Technologies, 2020, 113: 108-123. |
20 | 王雷, 王欣, 刘德海, 等. 智能网联下无人驾驶汽车配送路径优化方法[J].系统科学与数学, 2020, 40(11): 1984-1998. |
Wang L, Wang X, Liu D H, et al. Route optimization methodology for unmanned vehicle distribution in intelligent network [J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 1984-1998. | |
21 | 马晓磊, 沈宣良, 张钊, 等. 基于拉格朗日松弛算法的自动驾驶公交调度优化研究[J]. 中国公路学报, 2019, 32(12): 10-24. |
Ma X L, Shen X L, Zhang Z, et al. Optimization of autonomous bus scheduling based on Lagrangian relaxation[J]. China Journal of Highway and Transport, 2019, 32(12): 10-24. | |
22 | 雷旭, 李立, 李光泽, 等. 多车道交通流理论与应用研究综述[J]. 长安大学学报(自然科学版), 2020, 40(4): 78-90. |
Lei X, Li L, Li G Z, et al. Review of multilane traffic flow theory and application[J]. Journal of Chang'an University(Natural Science Edition), 2020,40(4):78-90. | |
23 | 张新艳, 邹亚圣. 基于改进A*算法的自动导引车无碰撞路径规划[J]. 系统工程理论与实践, 2021, 41(1): 240-246. |
Zhang X Y, Zou Y S. Collision-free path planning for automated guided vehicles based on improved A* algorithm[J]. Systems Engineering—Theory & Practice, 2021, 41(1): 240-246. |
[1] | Xiao-yan GU,Liang CHEN,Qian LIU,Meng-di MU,Deng-sheng WU. Research on Grazing Path Planning with Time Window under Grass Livestock Balance Constraints [J]. Chinese Journal of Management Science, 2023, 31(8): 184-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|