Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (10): 41-55.doi: 10.16381/j.cnki.issn1003-207x.2021.2499
Previous Articles Next Articles
Received:
2021-12-02
Revised:
2024-02-03
Online:
2024-10-25
Published:
2024-11-09
Contact:
Ying Zhou
E-mail:zhouying@dlut.edu.cn
CLC Number:
Long Shen,Ying Zhou. Credit Scoring Model Based on JS Divergence Feature Discretization[J]. Chinese Journal of Management Science, 2024, 32(10): 41-55.
"
(a) 序号 | (b)一级 准则层 | (c)二级 准则层 | (d) 指标名称 | (e)指标性质 | (f)原始数据 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) 企业1 | (2) 企业2 | (3) 企业3 | ... | (18929) 企业 18930 | (18930) 企业 18931 | (18931) 企业 18932 | |||||
1 | 企业 内部 财务 因素 | 偿债能力 | x1资产负债率 | 负向 | 84.359 | 42.534 | 54.461 | ... | 75.629 | 55.319 | 53.044 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
30 | x50每股权益合计 | 正向 | 23.941 | 1.646 | 5.311 | ... | 2.145 | 3.500 | 2.348 | ||
31 | 盈利能力 | x51每股收益EPS-基本 | 正向 | 3.470 | 0.165 | 0.594 | ... | 0.242 | -0.048 | 0.148 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
77 | x168归属于母公司普通股东的权益综合收益率 | 正向 | 0.210 | 0.111 | 0.119 | ... | 0.115 | -0.017 | 0.063 | ||
78 | 运营能力 | x170投资活动产生的现金流量净额占比 | 正向 | 175.860 | 744.603 | 193.575 | ... | 2987.009 | -141.211 | -166.726 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
92 | x194账面市值比 | 正向 | 0.865 | 0.865 | 0.865 | ... | 0.506 | 0.764 | 0.602 | ||
93 | 成长能力 | x195每股净资产 | 正向 | 17.920 | 10.811 | 8.678 | ... | 11.111 | -4.124 | 0.858 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
108 | x221每股净资产增长率 | 正向 | 0.047 | 0.047 | 0.047 | ... | 0.153 | -0.027 | 0.010 | ||
109 | 企业 内部 非财务 因素 | 内部 非财务 因素 | x222十大股东股权集中指标 | 定量 | 49.376 | 64.332 | 71.040 | ... | 58.532 | 58.532 | 58.532 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
123 | x241股东大会 召开次数 | 定性 | 1.000 | 1.000 | 1.000 | ... | 3.358 | 3.358 | 3.358 | ||
124 | 高管 基本 情况 | x243董事长年龄 | 定性 | 52.630 | 69.000 | 51.000 | ... | 52.630 | 54.000 | 52.630 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
126 | x247总经理年龄 | 定性 | 44.000 | 55.000 | 47.000 | ... | 43.000 | 41.000 | 49.000 | ||
127 | 基本 信用 情况 | x248前十大股东是否存在关联 | 定性 | 3.000 | 2.000 | 2.000 | ... | 2.000 | 2.000 | 2.000 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
130 | x252关联交易金额占比 | 定量 | 0.000 | 0.006 | 0.013 | ... | 0.000 | 0.011 | 1.118 | ||
131 | 企业外部宏观条件 | x255恩格尔系数 | 负向 | 31.365 | 31.365 | 31.365 | ... | 39.400 | 39.400 | 39.400 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ||
159 | x291进口增长率 | 正向 | -0.071 | -0.071 | -0.071 | ... | 0.436 | -0.029 | 0.248 | ||
160 | 违约状态 | y违约状态 | —— | 非违约 | 非违约 | 非违约 | ... | 违约 | 违约 | 违约 |
"
(1) 序号 | (2)第1次 区间划分 | (3) JSD | (4)第2次 区间划分 | (5) JSD | (6)第3次 区间划分 | (7) JSD | (8)第4次 区间划分 | (9) JSD | (10)第5次 区间划分 | (11) JSD |
---|---|---|---|---|---|---|---|---|---|---|
1 | (-inf,24.03) | 0.019 | (-inf,24.03) | 0.019 | (-inf,24.03) | 0.019 | (-inf,24.03) | 0.019 | (-inf,24.03) | 0.019 |
2 | [24.03,inf) | 0.002 | [24.03,29.08) | 0.005 | [24.03,29.08) | 0.005 | [24.03,29.08) | 0.005 | [24.03,29.08) | 0.005 |
3 | [29.08,inf) | 0.003 | [29.08,42.86) | 0.009 | [29.08,42.86) | 0.009 | [29.08,42.86) | 0.009 | ||
4 | [42.86,inf) | 0.012 | [42.86,58.12) | 0.000 | [42.86,58.12) | 0.000 | ||||
5 | [58.12,inf) | 0.018 | [58.12,75.07) | 0.006 | ||||||
6 | [75.07,inf) | 0.016 | ||||||||
7 | 总JSD | 0.021 | 0.027 | 0.045 | 0.051 | 0.055 |
"
(1) 序号 | (2) 指标 | (3)指标区间 | (4) 标记 | (5) 企业个数 | (6)企业 个数占比 | (7)非违约 企业个数 | (8)违约 企业个数 | (9) 违约率 | (10) WOE | (11) JS散度 |
---|---|---|---|---|---|---|---|---|---|---|
1 | x1资产 负债率 | (-inf, 24.03) | 0 | 2413 | 0.127 | 2364 | 49 | 0.020 | 1.554 | 0.019 |
2 | [24.03, 29.08) | 1 | 1198 | 0.063 | 1157 | 41 | 0.034 | 1.017 | 0.005 | |
3 | [29.08, 42.86) | 2 | 4186 | 0.221 | 3983 | 203 | 0.048 | 0.654 | 0.009 | |
4 | [42.86, 58.12) | 3 | 5107 | 0.27 | 4623 | 484 | 0.095 | -0.066 | 0 | |
5 | [58.12, 75.07) | 4 | 4421 | 0.234 | 3851 | 570 | 0.129 | -0.412 | 0.006 | |
6 | [75.07, inf) | 5 | 1607 | 0.085 | 1264 | 343 | 0.213 | -1.018 | 0.016 | |
7 | 总计 | 18932 | 1.000 | 17242 | 1690 | 0.089 | 0.055 | |||
8 | x2长期 资本负债率 | (-inf, 1.33) | 0 | 2660 | 0.141 | 2503 | 157 | 0.059 | 0.446 | 0.003 |
9 | [1.33, 2.50) | 1 | 1355 | 0.072 | 1269 | 86 | 0.063 | 0.369 | 0.001 | |
10 | [2.50, 5.19) | 2 | 2110 | 0.111 | 1941 | 169 | 0.080 | 0.118 | 0.000 | |
11 | [5.19, 9.90) | 3 | 2392 | 0.126 | 2192 | 200 | 0.084 | 0.072 | 0.000 | |
12 | [9.90, 55.32) | 4 | 8590 | 0.454 | 7771 | 819 | 0.095 | -0.073 | 0.000 | |
13 | [55.32, inf) | 5 | 1825 | 0.096 | 1566 | 259 | 0.142 | -0.523 | 0.004 | |
14 | 总计 | 18932 | 1.000 | 17242 | 1690 | 0.089 | 0.009 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1476 | x158出口增长率 | (-inf, -0.12) | 0 | 1253 | 0.066 | 1144 | 109 | 0.087 | 0.028 | 0.000 |
1477 | [-0.12, -0.03) | 1 | 2449 | 0.129 | 2394 | 55 | 0.022 | 1.451 | 0.018 | |
1478 | [-0.03, 0.06) | 2 | 3302 | 0.174 | 3168 | 134 | 0.041 | 0.840 | 0.011 | |
1479 | [0.06, 0.12) | 3 | 3169 | 0.167 | 2996 | 173 | 0.055 | 0.529 | 0.005 | |
1480 | [0.12, 0.18) | 4 | 1431 | 0.076 | 1266 | 165 | 0.115 | -0.285 | 0.001 | |
1481 | [0.18, 0.38) | 5 | 3813 | 0.201 | 3149 | 664 | 0.174 | -0.766 | 0.020 | |
1482 | [0.38, inf) | 6 | 3515 | 0.186 | 3125 | 390 | 0.111 | -0.242 | 0.001 | |
1483 | 总计 | 18932 | 1.000 | 17242 | 1690 | 0.089 | 0.080 | |||
1484 | x159进口增长率 | (-inf, -0.01) | 0 | 5616 | 0.297 | 5410 | 206 | 0.037 | 0.946 | 0.022 |
1485 | [-0.01, 0.03) | 1 | 1032 | 0.055 | 984 | 48 | 0.047 | 0.698 | 0.002 | |
1486 | [0.03, 0.10) | 2 | 1937 | 0.102 | 1779 | 158 | 0.082 | 0.099 | 0.000 | |
1487 | [0.10, 0.15) | 3 | 2411 | 0.127 | 2213 | 198 | 0.082 | 0.091 | 0.000 | |
1488 | [0.15, 0.35) | 4 | 3610 | 0.191 | 3090 | 520 | 0.144 | -0.541 | 0.009 | |
1489 | [0.35, 0.47) | 5 | 1075 | 0.057 | 871 | 204 | 0.190 | -0.871 | 0.007 | |
1490 | [0.47, inf) | 6 | 3251 | 0.172 | 2895 | 356 | 0.110 | -0.227 | 0.001 | |
1491 | 总计 | 18932 | 1.000 | 17242 | 1690 | 0.089 | 0.068 |
"
(1)序号 | (2)指标名称 | (3)Lasso回归系数 | (4)是否保留 | (5)信用5C |
---|---|---|---|---|
1 | 资产负债率 | 0.000 | 删除 | - |
2 | 流动比率 | 0.000 | 删除 | - |
3 | 现金比率 | -0.095 | 保留 | 能力/资本 |
... | ... | ... | ... | ... |
6 | 有形资产/净债务 | -0.025 | 保留 | 资本/抵押 |
7 | 经营活动产生的现金流量净额/非流动负债 | 0.000 | 删除 | - |
8 | 非筹资性现金净流量与流动负债的比率 | -0.010 | 保留 | 能力 |
... | ... | ... | ... | ... |
82 | 管理层持股比例 | -0.005 | 保留 | 品质 |
83 | 年薪披露方式 | -0.111 | 保留 | 品质 |
84 | 董事会会议次数 | 0.000 | 删除 | - |
... | ... | ... | ... | ... |
93 | 恩格尔系数 | -0.010 | 保留 | 条件 |
94 | 人均地区生产总值 | -0.122 | 保留 | 条件 |
95 | 地区生产总值指数:第一产业 | 0.000 | 删除 | - |
... | ... | ... | ... | ... |
115 | 竣工房屋价值增长率 | 0.000 | 删除 | - |
116 | 出口增长率 | 0.000 | 删除 | - |
117 | 进口增长率 | -0.006 | 保留 | 条件 |
"
(1) 序号 | (2)准则层 | (3)指标 | (4)系数 | (5)p值 | (6)准则层 | (7)指标 | (8)系数 | (9)p值 |
---|---|---|---|---|---|---|---|---|
1 | 企业内部 财务因素 —— 偿债能力 | 现金比率 | -0.692 | 0.000*** | 企业内部 财务因素—— 成长能力 | 总资产增长率 | -0.238 | 0.127 |
2 | 有形资产/净债务 | -0.331 | 0.035** | 净资产收益率增长率 | -0.369 | 0.003*** | ||
3 | 非筹资性现金净流量与流动负债的比率 | -0.375 | 0.006*** | 营业收入增长率 | -0.513 | 0.000*** | ||
4 | 长期负债占比 | -0.708 | 0.000*** | 应计项目 | 0.167 | 0.209 | ||
5 | 其他应收款与流动资产比 | -0.822 | 0.000*** | 投资活动产生的 现金流量增长率 | -0.133 | 0.268 | ||
6 | 其他应付款占 流动负债总额的比例 | -0.960 | 0.000*** | 筹资活动产生 的现金流量增长率 | -0.233 | 0.085* | ||
7 | 每股权益合计 | -0.508 | 0.004*** | 企业内部 非财务因素 | 十大流通股股东Z指数 | -0.335 | 0.041** | |
8 | 企业内部 财务因素 —— 盈利能力 | 销售毛利率 | -0.720 | 0.000*** | 十大流通股股东S指数 | -0.056 | 0.788 | |
9 | 销售期间费用率 | -0.047 | 0.801 | 十大流通股股东H指数 | -0.667 | 0.012** | ||
10 | 财务费用/营业总收入 | -0.476 | 0.002*** | 管理层持股比例 | -0.504 | 0.001*** | ||
11 | 资本支出/折旧和摊销 | -0.292 | 0.036** | 年薪披露方式 | -0.120 | 0.318 | ||
12 | 留存收益/总资产 | -0.940 | 0.000*** | 股东大会召开次数 | -0.334 | 0.006*** | ||
13 | 资产减值损失/营业总收入 | -0.067 | 0.628 | 企业基本 信用情况 | 是否披露内控评价报告 | -0.322 | 0.014** | |
14 | 市净率母公司 | -0.431 | 0.002*** | 是否披露内控审计报告 | -0.184 | 0.141 | ||
15 | 企业价值倍数 | 0.427 | 0.009*** | 企业外部 宏观条件 | 恩格尔系数 | -0.322 | 0.055* | |
16 | EVA | 0.223 | 0.084* | 人均地区生产总值 | -1.162 | 0.000*** | ||
17 | 营业外收入占营业总收入比重 | -0.256 | 0.052* | 最终消费率 | -0.453 | 0.001*** | ||
18 | 营业外支出占营业总成本比重 | -0.385 | 0.006*** | 最终消费支出增长率 | -0.412 | 0.002*** | ||
19 | 企业内部 财务因素 —— 运营能力 | 投资活动产生的现金流量净额占比 | -0.204 | 0.112 | 社会零售总额增长率 | 0.135 | 0.301 | |
20 | 现金满足投资比率 | -0.441 | 0.001*** | 就业人员数增长率 | -0.570 | 0.000*** | ||
21 | 应收账款周转率 | -0.658 | 0.000*** | 进口增长率 | -0.511 | 0.002*** | ||
22 | 流动资产周转率 | -0.448 | 0.002*** | 截距 | 6.352 | 0.000*** |
"
(1) 序号 | (2) 数据处理方式 | (3) 预测模型 | (4) G-mean | (5) AUC | (6) BM | (7) Type-II-error | (8) Type-I-error | (9) Gini | (10) H-measure |
---|---|---|---|---|---|---|---|---|---|
1 | JS散度 离散化 | LR | 0.842 | 0.922 | 0.685 | 0.130 | 0.184 | 0.843 | 0.976 |
2 | SVM | 0.592 | 0.914 | 0.347 | 0.648 | 0.005 | 0.828 | 0.951 | |
3 | NB | 0.807 | 0.904 | 0.621 | 0.266 | 0.113 | 0.808 | 0.972 | |
4 | DT | 0.587 | 0.846 | 0.337 | 0.651 | 0.012 | 0.692 | 0.950 | |
5 | KNN | 0.668 | 0.851 | 0.436 | 0.544 | 0.019 | 0.703 | 0.958 | |
6 | LDA | 0.735 | 0.911 | 0.527 | 0.444 | 0.029 | 0.822 | 0.964 | |
7 | NN | 0.664 | 0.916 | 0.433 | 0.553 | 0.014 | 0.832 | 0.957 | |
8 | Ada | 0.663 | 0.913 | 0.430 | 0.553 | 0.017 | 0.825 | 0.957 | |
9 | 0-1 规范化 | LR | 0.790 | 0.841 | 0.584 | 0.269 | 0.147 | 0.682 | 0.969 |
10 | SVM | 0.122 | 0.863 | 0.015 | 0.985 | 0.000 | 0.725 | 0.926 | |
11 | NB | 0.787 | 0.847 | 0.579 | 0.281 | 0.139 | 0.694 | 0.968 | |
12 | DT | 0.526 | 0.837 | 0.273 | 0.722 | 0.006 | 0.675 | 0.945 | |
13 | KNN | 0.581 | 0.810 | 0.326 | 0.657 | 0.018 | 0.621 | 0.949 | |
14 | LDA | 0.645 | 0.874 | 0.398 | 0.571 | 0.031 | 0.748 | 0.955 | |
15 | ANN | 0.637 | 0.889 | 0.396 | 0.589 | 0.015 | 0.778 | 0.955 | |
16 | Ada | 0.640 | 0.894 | 0.398 | 0.583 | 0.019 | 0.788 | 0.955 | |
17 | 标准化 | LR | 0.814 | 0.878 | 0.630 | 0.210 | 0.160 | 0.756 | 0.972 |
18 | SVM | 0.261 | 0.861 | 0.067 | 0.932 | 0.001 | 0.723 | 0.930 | |
19 | NB | 0.787 | 0.847 | 0.579 | 0.281 | 0.139 | 0.694 | 0.968 | |
20 | DT | 0.526 | 0.843 | 0.273 | 0.722 | 0.006 | 0.687 | 0.945 | |
21 | KNN | 0.600 | 0.835 | 0.348 | 0.633 | 0.019 | 0.669 | 0.951 | |
22 | LDA | 0.645 | 0.874 | 0.398 | 0.571 | 0.031 | 0.748 | 0.955 | |
23 | ANN | 0.628 | 0.893 | 0.387 | 0.601 | 0.012 | 0.786 | 0.954 | |
24 | Ada | 0.640 | 0.894 | 0.398 | 0.583 | 0.019 | 0.788 | 0.955 |
1 | Garcia S, Luengo J, Sáez J A, et al. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(4): 734-750. |
2 | 章彤,迟国泰. 基于最优信用特征组合的违约判别模型——以中国A股上市公司为例[J]. 系统工程理论与实践, 2020, 40(10): 2546-2562. |
Zhang T, Chi G T. Default discrimination model based on optimal credit feature portfolio: A case of Chinese A-share listed companies[J].Systems Engineering-Theory & Practice, 2020, 40(10): 2546-2562. | |
3 | Liu H, Setiono R. Chi2: feature selection and discretization of numeric attributes[C].Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence,Herndon,VA,USA, November 05-08, 1995. |
4 | Kim K, Han I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[J]. Expert Systems with Applications, 2000, 19(2): 125-132. |
5 | Sharmin S, Shoyaib M, Ali A A, et al. Simultaneous feature selection and discretization based on mutual information[J]. Pattern Recognition, 2019, 91: 162-174. |
6 | Mohamed R, Azah N. A new discretization approach of bat and K-means[J]. International Journal of Advanced Computer Science & Applications, 2021, 12(1): 510-516. |
7 | 赵宇,黄思明,陈锐. 数据分类中的特征选择算法研究[J]. 中国管理科学, 2013, 21(6): 38-46. |
Zhao Y, Huang S, Chen R. Research on feature selection algorithm in data classification[J]. Chinese Journal of Management Science, 2013, 21(6): 38-46. | |
8 | 肖进,唐静,刘敦虎,等. 基于改进GMDH的目标客户选择模型研究[J]. 中国管理科学,2015, 23(10): 162-169. |
Xiao J, Tang J, Liu D H, et al. Research on target customer selection model based on improved GMDH[J]. Chinese Journal of Management Science, 2015, 23(10): 162-169. | |
9 | Oztekin A, Al-Ebbini L, Sevkli Z, et al. A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology[J]. European Journal of Operational Research, 2018, 266(2): 639-651. |
10 | 石宝峰,王静. 基于ELECTRE III的农户小额贷款信用评级模型[J].系统管理学报,2018,27(5): 854-862. |
Shi B F, Wang J. A credit rating model for agricultural microfinance based on ELECTRE III[J]. Journal of Systems & Management, 2018, 27(5): 854-862. | |
11 | Gao W, Hu L, Zhang P, et al. Feature selection by integrating two groups of feature evaluation criteria[J]. Expert Systems with Applications, 2018, 110: 11-19. |
12 | 周颖,苏小婷. 基于最优指标组合的企业信用风险预测[J]. 系统管理学报, 2021, 30(5): 817-838. |
Zhou Y, Su X T. Corporate credit risk prediction based on optimal indicator combination[J]. Journal of Systems & Management, 2021, 30(5): 817-838. | |
13 | Jiménez-Cordero A, Morales J M, Pineda S. A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification[J]. European Journal of Operational Research, 2021, 293(1): 24-35. |
14 | 袁先智,周云鹏,严诚幸,等. 财务欺诈风险特征筛选框架的建立和应用[J]. 中国管理科学, 2022, 30(3): 43-54. |
Yuan X Z, Zhou Y P, Yan C X, et al. Establishment and application of a screening framework for financial fraud risk characteristics[J]. Chinese Journal of Management Science, 2022, 30(3): 43-54. | |
15 | 沈隆,周颖. 基于大数据变量最优组合的违约预测模型——以中国小企业为例[J]. 系统工程理论与实践. 2024, 44(3): 912-931. |
Shen L, Zhou Y. Default prediction model based on optimal combination of big data variables: A case study of Chinese small enterprises [J]. Systems Engineering - Theory & Practice, 2024, 44(3): 912-931. | |
16 | Sun Y, Chai N, Dong Y, et al. Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach[J]. International Journal of Forecasting, 2022, 38(3): 1158-1172. |
17 | Lu Y, Yang L, Shi B, et al. A novel framework of credit risk feature selection for SMEs during industry 4.0[J]. Annals of Operations Research, 2022: 1-28. |
18 | Valero-Carreras D, Alcaraz J, Landete M. Comparing two SVM models through different metrics based on the confusion matrix[J]. Computers & Operations Research, 2023, 152: 106131. |
19 | Zhang Y, Zhu R, Chen Z, et al. Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data[J]. European Journal of Operational Research, 2021, 290(1): 235-247. |
20 | Altman E I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance (New York), 1968, 23(4): 589-609. |
21 | Murphy C K, Benaroch M. Adding value to induced decision trees for time-sensitive data[J]. INFORMS Journal on Computing, 1997, 9(4): 385-396. |
22 | 韩璐,韩立岩. 正交支持向量机及其在信用评分中的应用[J]. 管理工程学报, 2017, 31(2): 128-136. |
Han L, Han L Y. Orthogonal support vector machine and its application in credit scoring[J]. Journal of Industrial Engineering and Engineering Management, 2017, 31(2): 128-136. | |
23 | Ma L, Zhao X, Zhou Z, et al. A new aspect on P2P online lending default prediction using meta-level phone usage data in China[J]. Decision Support Systems, 2018, 111: 60-71. |
24 | Berg T, Burg V, Gombović A, et al. On the rise of fintechs: Credit scoring using digital footprints[J]. The Review of Financial Studies, 2020, 33(7): 2845-2897. |
25 | 杨莲,石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75. |
Yang L, Shi B F. Credit risk evaluation model and empirical evidence based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75. | |
26 | Odhiambo O E, Onyango O G, Waema K M. Feature selection for classification using principal component analysis and information gain[J]. Expert Systems with Applications, 2021, 174: 114765. |
27 | Xiao J, Zhong Y, Jia Y, et al. A novel deep ensemble model for imbalanced credit scoring in internet finance[J]. International Journal of Forecasting, 2024, 40(1): 348-372. |
28 | Xu C, Chang W, Liu W. Data-driven decision model based on local two-stage weighted ensemble learning[J]. Annals of Operations Research, 2023, 325(2): 995-1028. |
29 | Audrino F, Kostrov A, Ortega J. Predicting U.S. Bank failures with MIDAS logit models[J]. Journal of Financial and Quantitative Analysis, 2019, 54(6): 2575-2603. |
30 | Han J, Jiang D, Li L. Automatic accuracy assessment via hashing in multiple-source environment[J]. Expert Systems with Applications, 2010, 37(3): 2609-2620. |
31 | Abdou H A. Genetic programming for credit scoring: The case of egyptian public sector banks[J]. Expert Systems with Applications, 2009, 36(9): 11402-11417. |
32 | Wang K. Unified distributed robust regression and variable selection framework for massive data[J]. Expert Systems with Applications, 2021, 186: 115701. |
33 | He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117. |
34 | Hand D J. Measuring classifier performance: A coherent alternative to the area under the ROC curve[J]. Machine Learning, 2009, 77(1): 103-123. |
35 | Jones S. Corporate bankruptcy prediction: A high dimensional analysis[J]. Review of Accounting Studies,2017, 22(3): 1366-1422. |
36 | 戴亦一,张鹏东,潘越. 老赖越多,贷款越难?——来自地区诚信水平与上市公司银行借款的证据[J]. 金融研究, 2019(8): 77-95. |
Dai Y Y, Zhang P D, Pan Y. The more old scoundrels, the more difficult it is to get a loan?——Evidence from regional integrity level and bank borrowing of listed companies[J]. Journal of Financial Research, 2019(8): 77-95. | |
37 | Dodd L E, Pepe M S. Semiparametric regression for the area under the receiver operating characteristic curve[J]. Journal of the American Statistical Association, 2003, 98(462): 409-417. |
38 | 周颖,沈隆. 基于Brown-Mood中位数检验的小企业债信评级体系[J].系统管理学报,2020,29(6): 1043-1055. |
Zhou Y, Shen L. Small business debt credit rating system based on Brown-mood median test[J]. Journal of Systems & Management, 2020, 29(6): 1043-1055. |
[1] | DONG Bing-jie, CHI Guo-tai. Study on Default Prediction Based on Sentiment Data [J]. Chinese Journal of Management Science, 2023, 31(4): 111-120. |
[2] | LIU Ming, XU Xi-fen, NING Jing, CAO Jie. Modeling and Optimizing Method for Rebalancing the Dock-less Bicycles based on Order Data Analysis [J]. Chinese Journal of Management Science, 2022, 30(4): 275-286. |
[3] | GUO Wei-dong, ZHOU Zach Zhi-zhong, QIAN Chun-tao. Application of Mobile App List in Evaluating Borrowers’ Credit Risk——An Empirical Analysis of an Online Lending Platform [J]. Chinese Journal of Management Science, 2022, 30(12): 96-107. |
[4] | YAN Zhang-hua, LIU Lei. Supply Optimization for Bicycle Sharing System Considering Service Level and Dynamic Transfer [J]. Chinese Journal of Management Science, 2019, 27(9): 195-204. |
[5] | JIANG Cui-qing, WANG Rui-ya, DIGN Yong. The Default Prediction Combined with Soft Informationin Online Peer-to-Peer Lending [J]. Chinese Journal of Management Science, 2017, 25(11): 12-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|