中国管理科学 ›› 2025, Vol. 33 ›› Issue (8): 75-89.doi: 10.16381/j.cnki.issn1003-207x.2022.2294
收稿日期:
2022-10-25
修回日期:
2024-01-10
出版日期:
2025-08-25
发布日期:
2025-09-10
通讯作者:
朱建新
E-mail:zhjx@vip.163.com
基金资助:
Jianxin Zhu(), Kexin Liu, Nengmin Zeng, Xiong Wu
Received:
2022-10-25
Revised:
2024-01-10
Online:
2025-08-25
Published:
2025-09-10
Contact:
Jianxin Zhu
E-mail:zhjx@vip.163.com
摘要:
竞争网络位置作为企业制定战略决策的关键因素,其对财务绩效影响的重要性评估是本文研究的重点。本文以我国2008-2019年的财产保险行业为研究样本构建竞争网络,采用基于可解释性随机森林的机器学习模型衡量竞争网络特征对企业财务绩效的重要性,并进一步分析竞争网络特征对拟合企业财务绩效模型的相对重要性排序以及因果关系。研究发现:(1)整体而言,竞争网络或者市场结构特征的缺失都会降低对企业财务绩效模型的拟合性能,其中竞争网络特征缺失带来的影响更为明显。(2)按照重要程度对竞争网络中的特征进行排序,并进一步采用SHAP解释模型探索竞争网络特征影响财务绩效的内在机理,结果表明,个体网规模、中间人次数和接近中心性这三个最为重要的特征对财务绩效均服从幂律分布。(3)进一步地,运用倾向得分匹配方法验证了变量间的强因果关系,证明该研究范式对传统计量模型的开发也具有重要的指导作用。本文的结论丰富了竞争网络与财务绩效相关领域的研究成果并对其提供依据,且为面向高维、非线性因素间的因果分析与验证提供了新的解决思路。
中图分类号:
朱建新, 刘可心, 曾能民, 吴雄. 竞争网络与公司财务绩效[J]. 中国管理科学, 2025, 33(8): 75-89.
Jianxin Zhu, Kexin Liu, Nengmin Zeng, Xiong Wu. Competitive Network and Financial Performance: Empirical Evidence Based on Explainable Random Forest[J]. Chinese Journal of Management Science, 2025, 33(8): 75-89.
表1
特征变量定义"
变量类型 | 变量名称 | 变量符号 | 变量测度方法 |
---|---|---|---|
财务绩效 | |||
- | 收入 | PI | 保费收入 |
- | 成本 | Cost | 赔付支出 |
- | 利润 | Profit | 净利润 |
竞争网络特征 | |||
个体网指标 | 个体网规模 | Size | 与焦点企业直接相连的其他企业的数量 |
个体网密度 | Densit | ||
中间人次数 | Broker | 若企业A需要通过企业B才能与企业C联络,则B记为中间人 | |
可达效率 | ReachE | 企业节点在两步内可达的点数占各个节点的个体网规模总和的比重 | |
中介中心性 | Betweenness | ||
接近中心性 | inCloseness | ||
特征向量中心性 | Eigenvec | ||
网络约束系数 | Constra | ||
等效度指数 | Hierarc | ||
网络有效规模 | EffSize | ||
效率 | Efficie | ||
介数中心性 | EgoBet | ||
聚类系数 | Clus Coef | ||
市场结构特征 | |||
竞争地位 | 勒纳指数 | Lerner | 详见式(12)~式(15) |
基准特征 | |||
资金实力 | 企业规模 | Asset | 企业期末总资产 |
经营效能 | 产品集中度 | HHI | |
再保险比例 | Rein | 分出保费/总保费收入 | |
赔付率 | Payout | 综合赔款支出/已赚保费 | |
偿债能力 | 资本比例 | Cap | 所有者权益/总资产 |
业务杠杆 | OL | 保费收入/所有者权益 | |
财务杠杆 | Lev | 负债总额/所有者权益 | |
资产负债率 | DebtR | 负债总额/总资产 | |
成长能力 | 投资收益率 | ROI | 投资收益/平均可投资资产 |
资产收益率 | ROA | 净利润/总资产 | |
保费收入增长率 | RINF | (当年保费收入-上年保费收入)/当年保费收入 | |
公司治理 | 股权制衡度 | S2s1 | 第二大股东持股占比/第一大股东持股占比 |
董事会规模 | Board | 董事会总人数 | |
股权集中度 | Sum3 | 前三个股东持股比例的平方和 | |
两职合一 | Duality | 董事长与总经理为同一人时记为1,否则为0 | |
公司性质 | 是否上市 | Listed | 上市公司记为1,否则为0 |
成立年限 | Age | 企业年龄 | |
是否外资 | Foreign | 含有外资资本记为1,否则为0 |
表2
特征变量的描述性统计"
变量 | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
财务绩效 | |||||
PI | 410 | 15052.961 | 38859.17 | 34.85 | 281010 |
Cost | 410 | 7625.967 | 19971.136 | 4.25 | 154267 |
Profit | 410 | 668.307 | 2286.783 | -98.18 | 21294.801 |
竞争网络特征 | |||||
Size | 410 | 27.654 | 18.146 | 0 | 79 |
Densit | 410 | 52.577 | 13.112 | 0 | 66.67 |
ReachE | 410 | 7.695 | 12.994 | 0 | 100 |
Broker | 410 | 241.199 | 272.486 | 0 | 1574 |
Betweenness | 410 | 46.871 | 91.679 | 0 | 686.852 |
inCloseness | 410 | 6.527 | 5.16 | 1.124 | 48.438 |
Eigenvec | 410 | 0.114 | 0.062 | 0.033 | 0.707 |
EffSize | 410 | 7.195 | 2.945 | 0 | 15.502 |
Efficie | 410 | 0.112 | 0.032 | 0 | 0.315 |
Constra | 410 | 0.068 | 0.043 | 0 | 0.752 |
Hierarc | 410 | 0.006 | 0.005 | 0 | 0.028 |
EgoBet | 410 | 10.974 | 19.659 | 0 | 126.81 |
Clus Coef | 410 | 0.512 | 0.053 | 0 | 0.595 |
市场结构特征 | |||||
Lerner | 410 | 0.531 | 0.186 | 0 | 0.915 |
基准特征 | |||||
DebtR | 410 | 0.648 | 0.177 | 0.105 | 1.202 |
Cap | 410 | 0.349 | 0.175 | -0.202 | 0.895 |
Lev | 410 | 3.291 | 16.771 | -112.566 | 311.713 |
OL | 410 | 2.886 | 18.097 | -80.319 | 350.821 |
RINF | 410 | 0.303 | 0.871 | -0.365 | 15.528 |
ROI | 410 | 0.129 | 0.109 | -0.108 | 0.705 |
HHI | 410 | 0.532 | 0.196 | 0.156 | 1 |
Rein | 410 | 0.344 | 0.723 | -1 | 6.753 |
Payout | 410 | 0.698 | 0.479 | 0.04 | 6.529 |
Asset | 410 | 24572.252 | 59908.115 | 190.34 | 420379 |
Sum3 | 410 | 0.771 | 0.247 | 0.3 | 1 |
S2s1 | 410 | 0.439 | 0.398 | 0 | 1 |
Board | 410 | 8.641 | 3.345 | 2 | 18 |
Duality | 410 | 0.149 | 0.356 | 0 | 1 |
Foreign | 410 | 0.351 | 0.478 | 0 | 1 |
Listed | 410 | 0.044 | 0.205 | 0 | 1 |
Age | 410 | 8.222 | 5.731 | 0 | 36 |
ROA | 410 | -0.157 | 5.249 | -39.782 | 11.722 |
表3
随机森林方法的拟合结果"
变量 | Group1 | Group2 | Group3 | Group4 | Group5 |
---|---|---|---|---|---|
模型1:PI | |||||
MAE | 3186.5083 | 2648.646 | 2672.1404 | 2899.5221 | 3232.8047 |
RMSE | 13647.8888 | 8966.45932 | 9200.4416 | 12271.0331 | 14761.0894 |
R2_Score | 0.8459 | 0.9927 | 0.9555 | 0.8971 | 0.8145 |
模型2:Cost | |||||
MAE | 1930.2821 | 1842.2862 | 1850.6995 | 1990.1941 | 2098.6977 |
RMSE | 7199.5338 | 6557.3977 | 6842.8924 | 7400.7595 | 8326.7164 |
R2_Score | 0.8712 | 0.9097 | 0.8941 | 0.8535 | 0.8053 |
模型3:Profit | |||||
MAE | 301.7199 | 264.1507 | 271.8229 | 309.2835 | 325.3374 |
RMSE | 1117.5600 | 809.2412 | 903.9652 | 954.2894 | 1001.7300 |
R2_Score | 0.7861 | 0.8732 | 0.8199 | 0.7731 | 0.7687 |
表4
基于随机森林的特征重要性排序"
类别 | 模型1:PI | 模型2:Cost | 模型3:Profit | |||
---|---|---|---|---|---|---|
特征变量 | 重要性% | 特征变量 | 重要性% | 特征变量 | 重要性% | |
资金实力 | Asset | 50.4933 | Asset | 50.5651 | Asset | 59.3051 |
个体网 | Size | 11.3570 | inCloseness | 9.8442 | inCloseness | 11.0168 |
Broker | 8.5704 | Size | 7.4878 | Size | 3.8096 | |
inCloseness | 7.4085 | Broker | 6.1018 | Broker | 3.4051 | |
Constra | 2.5553 | ReachE | 2.986 | EffSize | 1.1798 | |
ReachE | 1.8088 | EffSize | 2.7482 | Densit | 1.1320 | |
EffSize | 1.0448 | Densit | 2.0000 | ReachE | 1.1283 | |
Eigenvec | 0.8835 | Constra | 1.7326 | Eigenvec | 0.4803 | |
Densit | 0.7868 | Eigenvec | 0.6730 | Constra | 0.2853 | |
Efficie | 0.1778 | Efficie | 0.2740 | Hierarc | 0.2439 | |
Hierarc | 0.1495 | Hierarc | 0.2427 | Clus Coef | 0.1228 | |
Clus Coef | 0.0617 | Clus Coef | 0.1688 | Efficie | 0.1081 | |
Betweenness | 0.0031 | EgoBet | 0.0516 | EgoBet | 0.0183 | |
EgoBet | 0.0023 | Betweenness | 0.0268 | Betweenness | 0.0111 | |
小计 | 34.8095 | 小计 | 34.3375 | 小计 | 22.9414 | |
竞争地位 | Lerner | 0.5647 | Lerner | 0.5152 | Lerner | 0.5089 |
经营效能 | HHI | 4.5855 | HHI | 5.9666 | HHI | 3.5907 |
Rein | 0.6978 | Rein | 0.5224 | Rein | 1.2342 | |
Payout | 0.2013 | Payout | 0.0981 | Payout | 0.3689 | |
偿债能力 | Cap | 1.4275 | OL | 0.8836 | Cap | 0.8355 |
OL | 1.2999 | Cap | 0.5825 | OL | 0.6692 | |
Lev | 0.6522 | DebtR | 0.4373 | DebtR | 0.5129 | |
DebtR | 0.5125 | Lev | 0.3833 | Lev | 0.5008 | |
成长能力 | ROI | 1.5261 | ROA | 2.6443 | ROA | 4.3204 |
ROA | 1.2071 | ROI | 0.4926 | ROI | 1.7035 | |
RINF | 0.5298 | RINF | 0.1828 | RINF | 0.2966 | |
公司治理 | S2s1 | 0.6917 | S2s1 | 0.9171 | S2s1 | 0.8715 |
Board | 0.2654 | Sum3 | 0.6681 | Sum3 | 0.4863 | |
Sum3 | 0.1144 | Board | 0.1651 | Board | 0.3645 | |
Duality | 0.0059 | Duality | 0.0035 | Duality | 0.1573 | |
公司性质 | Listed | 0.2106 | Age | 0.3250 | Listed | 1.0545 |
Age | 0.2047 | Listed | 0.3097 | Age | 0.2756 | |
Foreign | 0.0001 | Foreign | 0.0002 | Foreign | 0.0022 |
表5
倾向得分匹配后样本的回归结果"
变量 | 非线性模型 | 线性模型 | |||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
PI | Cost | Profit | PI | Cost | Profit | ||||
Size | -0.82*** (0.13) | -0.25** (0.10) | -0.94*** (0.15) | -0.31*** (0.12) | -0.38** (0.20) | -0.25* (0.20) | -0.37*** (0.05) | -0.56*** (0.19) | -0.46 (0.24) |
Broker | -0.46*** (0.06) | -0.15*** (0.05) | -0.53*** (0.07) | -0.19*** (0.06) | -0.22** (0.10) | -0.16* (0.10) | -0.25*** (0.04) | 0.19 (0.15) | 0.35 (0.18) |
InCloseness | -0.85*** (0.10) | -0.49*** (0.08) | -0.74*** (0.85) | -0.33*** (0.09) | -0.40** (0.16) | -0.28* (0.17) | 0.04 (0.04) | 0.06 (0.04) | 0.07 (0.06) |
Asset | 12.02*** (1.19) | 12.97*** (1.35) | 11.35*** (2.36) | 14.17*** (0.99) | 13.14*** (1.15) | 13.93*** (1.42) | |||
HHI | 0.01 (0.05) | 0.11** (0.05) | -0.01 (0.09) | -0.01 (0.04) | 0.07 (0.05) | -0.08 (0.06) | |||
Rein | -0.10** (0.04) | -0.13** (0.05) | -0.24*** (0.09) | -0.06* (0.04) | -0.05 (0.04) | -0.07 (0.06) | |||
Cap | -0.39*** (0.05) | -0.32*** (0.06) | -0.22** (0.10) | -0.22*** (0.04) | -0.19*** (0.05) | -0.02 (0.06) | |||
OL | 2.63*** (0.43) | 3.03*** (0.50) | 0.85 (0.87) | 1.70*** (0.37) | 1.84*** (0.43) | 0.27 (0.53) | |||
Lev | -2.40*** (0.35) | -2.67*** (0.40) | -0.48 (0.71) | -1.42*** (0.30) | -1.45*** (0.35) | -0.03 (0.43) | |||
ROI | 0.01 (0.05) | 0.07 (0.05) | 0.01 (0.09) | 0.04 (0.04) | 0.08* (0.05) | -0.07 (0.05) | |||
ROA | 0.13*** (0.04) | 0.17*** (0.05) | 0.15* (0.09) | 0.05 (0.04) | 0.10** (0.04) | 0.32*** (0.05) | |||
S2s1 | 0.08* (0.05) | 0.12** (0.05) | -0.15* (0.09) | 0.02 (0.04) | 0.01 (0.04) | -0.09* (0.05) | |||
Cons | 7.84*** (0.75) | 11.23*** (0.66) | 6.53*** (0.85) | 10.38*** (0.75) | 3.15*** (1.20) | 7.07*** (0.67) | 4.64*** (0.30) | 4.29*** (0.34) | 4.33*** (0.42) |
Ob | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 |
R2 | 0.5578 | 0.7537 | 0.5074 | 0.7282 | 0.1118 | 0.4088 | 0.7500 | 0.6654 | 0.4873 |
F | 116.07*** | 68.07*** | 94.77*** | 59.61*** | 11.58*** | 6.35*** | 66.75*** | 44.25*** | 21.15*** |
[1] | Porter M E. Competitive strategy: Techniques for analyzing industries and competitors[M]. New York: Free Press, 1980. |
[2] | Yao E, Ferrier W J, Yu T, et al. Rivals by association: Competition networks and firm performance[C]//Proceedings of the Atlanta Competitive Advantage Conference, Atlanta, June 12-14, 2008. |
[3] | 喻冬冬, 罗春林, 万谧宇, 等. 滋养你的竞争对手?——考虑电商平台自有品牌的平台需求信息共享策略[J]. 中国管理科学, 2024, 32(1): 325-334. |
Yu D D, Luo C L, Wan M Y, et al. Nourish your competitor?Demand information sharing of E-commerce platform in the presence of store brand encroachment[J]. Chinese Journal of Management Science, 2024, 32(1): 325-334. | |
[4] | 邓新明, 郭雅楠. 竞争经验、多市场接触与企业绩效——基于红皇后竞争视角[J]. 管理世界, 2020, 36(11): 111-132. |
Deng X M, Guo Y N. Competitive experience, multi-market contact, and firm performance: Based on the perspective of red queen competition[J]. Journal of Management World, 2020, 36(11): 111-132. | |
[5] | 沈文欣, 翁羽佳, 郑弦, 等. 复杂工程项目群多项目合作与竞争网络形成机理研究[J]. 中国管理科学, 2023, 31(12): 281-289. |
Shen W X, Weng Y J, Zheng X, et al. Characteristics and formation of multi-project cooperation and competition networks in complex program[J]. Chinese Journal of Management Science, 2023, 31(12): 281-289. | |
[6] | Shaffer S, Spierdijk L. Measuring multi-product banks’ market power using the Lerner index[J]. Journal of Banking & Finance, 2020, 117: 105859. |
[7] | Tsai W, Su K H, Chen M J. Seeing through the eyes of a rival: Competitor acumen based on rival-centric perceptions[J]. Academy of Management Journal, 2011, 54(4): 761-778. |
[8] | 陆瑶, 张叶青, 黎波, 等. 高管个人特征与公司业绩——基于机器学习的经验证据[J]. 管理科学学报, 2020, 23(2): 120-140. |
Lu Y, Zhang Y Q, Li B, et al. Managerial individual characteristics and corporate performance: Evidence from a machine learning approach[J]. Journal of Management Sciences in China, 2020, 23(2): 120-140. | |
[9] | Gao S, Tang O, Wang H, et al. Identifying competitors through comparative relation mining of online reviews in the restaurant industry[J]. International Journal of Hospitality Management, 2018, 71: 19-32. |
[10] | Liu Y, Jiang C, Zhao H. Assessing product competitive advantages from the perspective of customers by mining user-generated content on social media[J]. Decision Support Systems, 2019, 123: 113079. |
[11] | 许鑫, 朱奕帆, 姚占雷. 数据驱动的企业多层竞争网络构建与态势分析[J].情报学报,2018,37(8): 836-844. |
Xu X, Zhu Y F, Yao Z L. Construction and analysis of enterprise multi-layered competitive network based on data driver[J]. Journal of the China Society for Scientific and Technical Information,2018,37(8): 836-844. | |
[12] | Skilton P F, Bernardes E. Competition network structure and product market entry[J]. Strategic Management Journal, 2015, 36(11): 1688-1696. |
[13] | 周宏, 赵若瑜, 李文洁, 等. 大数据背景下市场竞争与债券信用风险——基于企业多元化发展的实证检验[J]. 会计研究, 2020(12): 125-136. |
Zhou H, Zhao R Y, Li W J, et al. Market competition and bond credit risk under the background of big data—Empirical test based on enterprise diversification development[J].Accounting Research,2020(12): 125-136. | |
[14] | 后锐, 张乐. 多市场接触竞争及其测度计算方法[J]. 经济与管理评论, 2014, 30(2): 45-52. |
Hou R, Zhang L. Multi-market contact competition and its measurement calculation method[J]. Review of Economy and Management, 2014, 30(2): 45-52. | |
[15] | 邓新明, 罗欢, 杨赛凡, 等. 基于静态与动态双重视角下的企业规模、竞争复杂性与市场绩效的关系研究——来自中国家电行业的实证检验[J]. 管理评论, 2021, 33(12): 284-294. |
Deng X M, Luo H, Yang S F, et al. The correlation among firm size, competitive complexity and market performance seen from static and dynamic perspectives: An empirical study on Chinese household appliance industry[J]. Management Review, 2021, 33(12): 284-294. | |
[16] | Chen M J, Lin H C, Michel J G. Navigating in a hypercompetitive environment: The roles of action aggressiveness and TMT integration[J]. Strategic Management Journal, 2010, 31(13): 1410-1430. |
[17] | Sun X, Yuan F, Wang Y. Market power and R&D investment: The case of China[J]. Industrial and Corporate Change, 2022, 30(6): 1499-1515. |
[18] | Alhassan A L, Biekpe N. Pricing power in insurance markets: Evidence from South Africa[J]. International Journal of Bank Marketing, 2019, 37(5): 1371-1392. |
[19] | 尹建华, 王森, 弓丽栋. 重污染企业环境绩效与财务绩效关系研究: 企业特征与环境信息披露的联合调节效应[J]. 科研管理, 2020, 41(5): 202-212. |
Yin J H, Wang S, Gong L D. Research on the relationship between environmental performance and financial performance of heavily polluting firms: The joint moderating effects of firm characteristics and environmental information disclosure[J]. Science Research Management, 2020, 41(5): 202-212. | |
[20] | 李心愉, 郁智慧. 我国寿险公司绩效影响因素实证研究[J]. 商业研究, 2011(11): 1-7. |
Li X Y, Yu Z H. Factors influencing the performance of life insurance corporations in China[J]. Commercial Research, 2011(11): 1-7. | |
[21] | 王丽珍, 李湘, 周意. 资本调整、风险承担与再保险水平的互动关系研究——基于财险公司面板数据的实证检验[J]. 管理评论, 2021, 33(10): 34-47. |
Wang L Z, Li X, Zhou Y. The research on the relationship among capital adjustment, risk-taking and reinsurance levels: Evidence from property insurance industry[J]. Management Review, 2021, 33(10): 34-47. | |
[22] | 陈素琴, 翁智慧. 风险投资与受资企业财务绩效相关性研究——基于创业板上市公司[J]. 会计之友, 2018(11): 85-92. |
Chen S Q, Weng Z H. Research on the correlation between venture capital and financial performance of funded enterprises:Based on the listed companies on growth enterprise market[J]. Friends of Accounting, 2018(11): 85-92. | |
[23] | 高明华, 郭传孜. 混合所有制发展、董事会有效性与企业绩效[J].经济与管理研究, 2019, 40(9): 114-134. |
Gao M H, Guo C Z. Mixed ownership, effectiveness of the board of directors and corporate performance[J]. Research on Economics and Management, 2019, 40(9): 114-134. | |
[24] | 丁寅寅. 股权集中度、股权制衡度对公司绩效的影响研究——基于中小板上市公司的实证检验[J]. 经营与管理, 2017(12): 26-29. |
Ding Y Y. Research on the influence of ownership concentration and equity balance on corporate performance:Based on the empirical test of listed companies in small and medium-sized board[J]. Management and Administration, 2017(12): 26-29. | |
[25] | 李建标, 李帅琦, 王鹏程. 两职分离形式的公司治理效应及其滞后性[J].管理科学,2016, 29(1): 53-69. |
Li J B, Li S Q, Wang P C. The corporate governance effect and hysteresis of different forms of chairman-CEO separation[J]. Journal of Management Science, 2016, 29(1): 53-69. | |
[26] | 卜伶鑫. 东北地区上市公司治理结构对绩效的影响实证分析[J]. 经营与管理, 2018(9): 40-43. |
Bu L X. Empirical analysis on the influence of governance structure on performance of listed companies in Northeast China[J]. Management and Administration, 2018(9): 40-43. | |
[27] | 张鹏, 邓然, 张立琨. 企业家社会资本与创业绩效关系研究[J]. 科研管理, 2015, 36(8): 120-128. |
Zhang P, Deng R, Zhang L K. A study on the relationship between entrepreneur’s social capital and entrepreneurial performance[J]. Science Research Management, 2015, 36(8): 120-128. | |
[28] | 李洪波, 闫鑫, 姚博文. 基于集成学习的科研计划项目绩效预测研究[J]. 科技管理研究, 2021, 41(21): 204-210. |
Li H B, Yan X, Yao B W. Performance prediction of scientific research projects based on ensemble learning[J]. Science and Technology Management Research, 2021, 41(21): 204-210. | |
[29] | 黄冰洁, 张同斌. 中国制造业企业绩效分化的关键影响因素识别及传导网络图解——基于机器学习组合算法的研究[J]. 运筹与管理, 2022, 31(4): 224-231. |
Huang B J, hang T B Z. Identification of key influencing factors and transmission network diagram of performance differentiation of Chinese manufacturing enterprises:A study based on machine learning combination algorithm[J].Operations Research and Management Science,2022,31(4):224-231. | |
[30] | 易明, 姚玉佳, 胡敏. 融合XGBoost与SHAP的政务新媒体公共价值共识可解释性模型——以“今日头条” 十大市级政务号为例[J]. 图书情报工作, 2022, 66(16): 36-47. |
Yi M, Yao Y J, Hu M. An interpretable model for new government media public value consensus integrating XGBoost and SHAP: Taking the top 10 municipal government accounts of the Jinri Toutiao as an example[J]. Library and Information Service, 2022, 66(16): 36-47. | |
[31] | Zheng S, He C, Hsu S C, et al. Corporate environmental performance prediction in China: An empirical study of energy service companies[J]. Journal of Cleaner Production, 2020, 266: 121395. |
[32] | 汪万敏, 智路平. 基于ADASYN-SFS-RF的欺诈检测模型泛化性能提升及可解释性研究[J]. 计算机应用研究, 2022, 39(12): 3605-3613. |
Wang W M, Zhi L P. Fraud detection model generalization performance improvement and interpretability study based on ADASYN-SFS-RF[J]. Application Research of Computers, 2022, 39(12): 3605-3613. | |
[33] | Kuzlu M, Cali U, Sharma V, et al. Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools[J].IEEE Access, 2020,8: 187814-187823. |
[34] | Zhang J, Jiang Y, Li X, et al. Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 632-643. |
[35] | Zhang J, Tian J, Alcaide A M, et al. Lifetime extension approach based on the levenberg-marquardt neural network and power routing of DC-DC converters[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 10280-10291. |
[36] | Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[37] | 余顺坤, 宋宇晴. GRA-RF组合算法在农信金融企业工资要素优选及测算中的应用[J]. 中国管理科学, 2022, 30(4): 86-95. |
Yu S K, Song Y Q. Research on the application of GRA-RF in optimization and calculation of age elements of rural credit financial enterprise[J]. Chinese Journal of Management Science, 2022, 30(4): 86-95. | |
[38] | Janitza S, Tutz G, Boulesteix A L. Random forest for ordinal responses: Prediction and variable selection[J]. Computational Statistics & Data Analysis, 2016, 96: 57-73. |
[39] | Lundberg S M, Lee S I. A unified approach to interpreting model predictions [C]// Proceedings of the 31st Conference on Neural Information Processing Systems,Long Beach, CA, USA, December 4-9, 2017. |
[40] | Maulana Kusdhany M I, Lyth S M. New insights into hydrogen uptake on porous carbon materials via explainable machine learning[J]. Carbon, 2021, 179: 190-201. |
[41] | 朱建新, 刘浏.复杂网络视角下的财险业竞争关系网络建模[J].哈尔滨工程大学学报,2021,42(3): 439-446. |
Zhu J X, Liu L. Modeling of an underwriting competition network from the perspective of complex network[J]. Journal of Harbin Engineering University, 2021, 42(3): 439-446. | |
[42] | Day G S, Reibstein D J, Gunther R E. Wharton on dynamic competitive strategy[M]. Hoboken, New Jersey: John Wiley & Sons, 2004. |
[43] | 刘超, 许澜涛. 多层时序网络视角下的最优投资组合策略研究[J]. 中国管理科学, 2024,DOI:/10.16381/j.cnki.issn1003-207x.2023.0851 . |
Liu C, Xu L T. Study on optimal portfolio strategy from the perspective of multilayer temporal network[J]. Chinese Journal of Management Science, 2024,DOI:10.16381/j.cnki.issn1003-207x.2023.0851 . | |
[44] | 莫东序, 郑田丹. 基于复杂网络的投资组合优化研究[J]. 中国管理科学, 2021, 29(5): 25-33. |
Mo D X, Zheng T D. Research on portfolio optimization based on complex network[J]. Chinese Journal of Management Science, 2021, 29(5): 25-33. | |
[45] | Lerner A P. The concept of monopoly and the measurement of monopoly power[J]. The Review of Economic Studies, 1934, 1(3): 157-175. |
[46] | 姚东旻. 因果推断初步: 微观计量经济学导论[M]. 北京: 清华大学出版社, 2022. |
Yao D M. Causal inference:Introduction to microeconometrics.[M]. Beijing: Tsinghua University Press, 2022. |
[1] | 赵宇,黄冰冰,邓元慧. 基于倾向评分匹配的国家双创示范基地内上市公司财务绩效分析[J]. 中国管理科学, 2023, 31(10): 136-145. |
[2] | 余顺坤, 宋宇晴. GRA-RF组合算法在农信金融企业工资要素优选及测算中的应用[J]. 中国管理科学, 2022, 30(4): 86-95. |
[3] | 王建玲, 李玥婷, 吴璇. 社会责任的信号作用——基于中国市场的研究[J]. 中国管理科学, 2018, 26(8): 31-41. |
[4] | 蒋翠清, 王睿雅, 丁勇. 融入软信息的P2P网络借贷违约预测方法[J]. 中国管理科学, 2017, 25(11): 12-21. |
[5] | 杨皖苏, 杨善林. 中国情境下企业社会责任与财务绩效关系的实证研究——基于大、中小型上市公司的对比分析[J]. 中国管理科学, 2016, 24(1): 143-150. |
[6] | 陶文杰, 金占明. 媒体关注下的CSR信息披露与企业财务绩效关系研究及启示——基于我国A股上市公司CSR报告的实证研究[J]. 中国管理科学, 2013, 21(4): 162-170. |
[7] | 纪建悦, 刘艳青, 王翠, 吕帅. 利益相关者影响企业财务绩效的理论分析与实证研究[J]. 中国管理科学, 2009, 17(6): 186-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|